
Query Management Facility™

Developing QMF Applications

Version 7 Release 2

SC27-0718-01

���

Query Management Facility™

Developing QMF Applications

Version 7 Release 2

SC27-0718-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under
Appendix F, “Notices” on page 273.

Second Edition (March 2002)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DB2 Universal Database Server
for OS/390 (DB2 UDB for OS/390), 5675-DB2, and of Query Management Facility, a feature of Version 7 Release 1 of
DATABASE 2 Server for VM and VSE (DB2 for VM and VSE), 5697-F42, and to all subsequent releases and
modifications until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct
editions.

This edition replaces and makes obsolete the previous edition, SC27-0718-00.

The technical changes for this edition are indicated by a vertical bar to the left of a change. A vertical bar to the left of
figure caption indicates that the figure has changed. Editorial changes that have no technical significance are not
noted.

© Copyright International Business Machines Corporation 1983, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The QMF Library v

About This Book vii
How to use this book vii
What you should know before you begin . . vii
How to send your comments vii
How to order QMF books viii

Chapter 1. QMF Application Development
Overview 1
What Is application development in QMF? . . 1
How can the end users use your application? 1
What QMF application development tools are
available? 3

Chapter 2. Using Procedures as
Applications 7
Knowing when not to use Procedures 7
Initial procedures 7
Using QMF CONNECT within a procedure . . 9
Substitution variables in procedures 10
Using REXX variables in procedures with
logic 12
Passing arguments to a procedure with logic 12
Using REXX error-handling statements in
procedures with logic 13
Calling REXX programs from a procedure
with logic 15

Chapter 3. The Callable Interface 19
What is the Callable Interface? 19
Defining the Interface Communications Area
(DSQCOMM) 21
Return Codes 23
Commands for using the callable interface . . 23
Running your callable interface application . 25
Using the callable interface from within QMF 25
Error handling 25
Running callable interface programs under
CICS 26

Chapter 4. Using the Command Interface
for Applications 29

Writing a program that uses the command
interface: An example 30
Invoking the command interface 31
The END command 31
Using variables in the command interface . . 32
Command interface return codes 33

Chapter 5. ADDRESS QRW: Using the QMF
Command Environment 37

Chapter 6. Writing QMF Applications that
Use ISPF. 39
Starting and running QMF from an ISPF
application 39
Running queries that contain variables . . . 40
Invoking a program from a QMF procedure
with logic under ISPF 41
Using ISPF commands from a procedure with
logic 41
Callable interface considerations 42
Using the EDIT command with ISPF 42
Using ISPF to debug applications 43

Chapter 7. Writing Bilingual Applications 45
Creating bilingual objects for your
applications 45
Using the command language variable . . . 46
Using an initial Procedure in a bilingual
application 47
Using English commands 47
Multilingual environments 48
QMF session environments 48
Creating translatable applications 50

Chapter 8. QMF Commands in Applications 51
CONNECT 51
END 53
EXIT 55
GET GLOBAL 56
INTERACT 57
MESSAGE 60
SET GLOBAL 62
START 66
Using command synonyms 73

© Copyright IBM Corp. 1983, 2002 iii

Chapter 9. Importing and Exporting QMF
Objects 77
What you can do with an exported file, data
set, or CICS data queue 78
Exporting versus saving data 79
Data and table objects. 79
Procedures and SQL queries 83
Chart objects 84
Encoded objects 84
Prompted query objects 99
Form objects 102
Report objects 111
QBE queries. 119
Specifications for externalized QMF objects 120
Rules and considerations when using CICS
queues 121

Chapter 10. Debugging Your QMF
Applications 123
Debugging your callable interface
applications 123
Debugging errors on the START and other
QMF commands 126

Appendix A. Sample Code for Callable
Interface Languages 127
Assembler language interface 127
C Language Interface 150
COBOL language interface 167
FORTRAN language interface. 184
PL/I language interface 200
REXX language interface 216

Appendix B. Export/Import Formats . . . 227
QMF format for data. 227
Table and field numbers for the prompted
query object. 230
Table and field numbers for the form object 232
Table and field numbers for the report object 238
HTML tags used in QMF reports. 240

Appendix C. Integrated Exchange Format
(IXF) 241
Header record (H) 242
Table record (T) 242
Column record (C) 243
Data record (D) 244
Column data format 244
Examples of IXF 251

Appendix D. Product Interface Macros 255

Appendix E. QMF Global Variable Tables 257
DSQ Global Variables for Profile-Related
State Information 257
DSQ Global Variables for State Information
Not Related to the Profile 259
DSQ Global Variables Associated with CICS 262
DSQ Global Variables Related to a Message
Produced by the Previous Command . . . 263
DSQ Global Variables Associated with Table
Editor. 264
DSQ Global Variables That Control How
Information is Displayed on the Screen . . 266
DSQ Global Variables That Control How
Commands and Procedures Are Executed. . 269
DSQ Global Variables That Show Results of
CONVERT QUERY 272
DSQ Global Variables That Show RUN
QUERY Error Message Information 272

Appendix F. Notices 273
Trademarks 276

Glossary of Terms and Acronyms . . . 277

Bibliography 291
APPC Publications 291
CICS Publications 291
COBOL Publications 292
DATABASE 2 Publications 292
DCF Publications 293
DRDA Publications 293
DXT Publications 293
Graphical Data Display Manager (GDDM)
Publications. 293
HLASM Publications. 293
ISPF/PDF Publications 294
OS/390 Publications 294
PL/I Publications 295
REXX Publications 295
ServiceLink Publications 295
VM Publications 295
VSE Publications 295

Index 297

iv QMF: Developing QMF Applications

The QMF Library

You can order manuals either through an IBM representative or by calling
1-800-879-2755 in the United States or any of its territories.

©CopyrightIBMCorp.1983,2002v

vi QMF: Developing QMF Applications

About This Book

This book is intended to help application programmers write applications that
use IBM® Query Management Facility (QMF).

How to use this book

The tasks in this book outline the design decisions that you need to make
before you write a QMF application, show you different programming
techniques, and provide some examples that highlight application
programming using QMF. The appendixes provide reference information
useful for application development.

This book serves OS/390®, VM® and VSE™ customers. Differences among
systems, or among CICS®, CMS, TSO and native OS/390 batch , are
highlighted when necessary. Otherwise, you can assume that QMF works the
same in each system.

What you should know before you begin

QMF applications let you work with QMF objects and perform QMF functions
from within an application program written in one of the languages QMF
supports. This book assumes you already know how to write queries and
procedures, format reports, and modify the database.

To write QMF applications using QMF command or callable interfaces, you
might need to know one of the following programming languages:

Callable Interface
Command Interface

Assembler, PL/I, C, REXX, COBOL, FORTRAN
Any language that runs under ISPF

You might also need a panel display application, depending on the type of
application you write.

For a list of books that provide information about QMF functions and
administration, see “The QMF Library” on page v.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information.

© Copyright IBM Corp. 1983, 2002 vii

Send your comments from the Web
Visit the Web site at:
http://www.ibm.com./qmf

The Web site has a feedback page that you can use to enter and send
comments.

Send your comments by e-mail
to comments@vnet.ibm.com. Be sure to include the name of the
product, the version number of the product, the name and part
number of the book (if applicable). If you are commenting on specific
text, please include the location of the text (for example, a chapter and
section title, a table number, a page number, or a help topic title).

Complete the readers’ comment form
at the back of the book and return it by mail, by fax (800-426-7773 for
the United States and Canada), or by giving it to an IBM
representative.

How to order QMF books

You can order QMF documentation either through an IBM representative or
by calling 1-800-879-2755 in the United States or any of its territories.

For a list of QMF books, see “The QMF Library” on page v.

About This Book

viii QMF: Developing QMF Applications

Chapter 1. QMF Application Development Overview

You can use many of the functions of QMF in your own applications. For
example, you can write applications that:
v Run queries or procedures
v Export or import QMF objects
v Display or print reports or charts
v Enable the user to enter or change data in the database

You can also write applications that provide helpful functions to your users in
QMF, such as a user-defined command that prints QMF reports at a remote
location, or a function key that automatically generates a chart of the weekly
sales results.

This chapter describes the two major types of QMF applications and the
application development tools QMF provides to help you implement your
application.

What Is application development in QMF?

The word application can have many meanings. In QMF, an application can be
a procedure, a program, or an EXEC that lets you run QMF commands and
alter QMF objects using the Export and Import QMF commands.

Application development refers to the process of creating an application. It
includes:
v Understanding the problem that your application solves
v Designing the application
v Writing the code, associated messages, and help panels

Given these definitions, you can begin making the design decisions that affect
how your end users use your application and what QMF application tools
you use to enable your application to interact with QMF.

How can the end users use your application?

You might want end users to interact primarily with your application, or you
might want them to use your application as a customized function in QMF.
v If your application is intended for end users who are unfamiliar with QMF,

you probably want your end users to interact primarily with your
application. In fact, you might not want your end users to know that QMF

© Copyright IBM Corp. 1983, 2002 1

is active. In this case, your application uses QMF services, but resides
outside of QMF. Your program issues QMF commands only as needed.

v If your end users are familiar with QMF, you might want your end users to
see your application as an extension or customization of QMF. In this case,
you need to set up your application to run within QMF.

End users interacting primarily with the application

Suppose you write an application that uses QMF services. This application
provides the end user with a menu-driven interface, as shown in Figure 1.

When the user selects an option, the application issues the appropriate QMF
commands. If the user selects option 1, for example, the application runs a
QMF procedure that might run a query and print the resulting report.

In the preceding example, your application controls QMF. Your user interacts
only with your user interface and is not aware that QMF is active.

End users starting your application within a QMF session

Suppose you write an application that sends a QMF report from one user to
another.

You expect your users to run your application from within the QMF
environment, so you can assign the application a command synonym

J & H Supply Company
Information System

Please select one of the following:

1. Print the monthly sales report

2. Create a new report

3. Modify information in the database

4. End the application

====> 1

Figure 1. An example of an application-defined panel

QMF Application Development Overview

2 QMF: Developing QMF Applications

(SEND_TO) that the end users can issue from the command line, or you can
assign the application to a function key instead, which automatically runs
your application.

After the user generates a report, the user can send this report to Smith by
entering SEND_TO SMITH on the QMF command line, as shown in Figure 2.

What QMF application development tools are available?

Regardless of how your end users see your application, you can write
applications using any of the following application development tools:
v QMF procedures
v QMF callable interface
v QMF command interface
v QMF externalized formats
v QMF command synonyms
v Other IBM products that bridge to QMF

REPORT LINE 1 POS 1 79

NAME DEPT JOB SALARY COMM
--------- ------ ----- ---------- ----------
DANIELS 10 MGR 19260.25 -
JONES 10 MGR 21234.00 -
LU 10 MGR 20010.00 -
MOLINARE 10 MGR 22959.20 -
HANES 15 MGR 20659.80 -
KERMISCH 15 CLERK 12258.50 110.10
NGAN 15 CLERK 12508.20 206.60
ROTHMAN 15 SALES 16502.83 1152.00
JAMES 20 CLERK 13504.60 128.20
PERNAL 20 SALES 18171.25 612.45
SANDERS 20 MGR 18357.50 -
SNEIDER 20 CLERK 14252.75 126.50
ABRAHAMS 38 CLERK 12009.75 236.50
MARENGHI 38 MGR 17506.75 -

1=Help 2= 3=End 4=Print 5=Chart 6=Query
7=Backward 8=Forward 9=Form 10=Left 11=Right 12=
OK, here is your report.
COMMAND ===> SEND_TO SMITH

Figure 2. An example of a user entering a customized QMF command

QMF Application Development Overview

Chapter 1. QMF Application Development Overview 3

QMF procedures
QMF procedures are QMF objects that run within QMF and issue QMF
commands. QMF procedures can execute any QMF commands available at
your installation. QMF provides two types of procedures: linear procedures
and procedures with logic.
v Linear procedures contain only QMF commands and comments. You can use

linear procedures in all environments supported in QMF.
v Procedures with logic combine QMF commands with REXX logic to allow

you to create more powerful programs. You can use procedures with logic
in all environments supported in QMF, except CICS. Procedures with logic
can contain QMF commands and any statement that is valid in a REXX
program.

For general information about writing linear procedures or procedures with
logic, see Using QMF For specific information about using QMF procedures to
write applications, see Chapter 2, “Using Procedures as Applications” on
page 7.

Starting with Version 3.3, QMF provides a system initialization procedure that
allows you to run commands and set global variables before the user sees the
QMF home panel. For more information, see the version of Installing and
Managing QMF for your platform.

QMF callable and command interfaces
If you choose not to use QMF procedures, you need to decide whether your
program communicates with QMF through the callable interface or the
command interface.

Callable interface
The QMF callable interface is a Systems Application Architecture (SAA)
interface that you use to create an application that is invoked outside of QMF,
starts a QMF session, and sends commands to QMF for execution.

The callable interface is available for all environments supported in QMF. It is
the SAA Common Programming Interface for query in the VM, OS/390, and
VSE environments, and is available for various languages as shown in Table 1.

Table 1. Callable interface support

CICS
under

OS/390

CICS
under
VSE

CMS TSO APPC SRPI Native
OS/390
batch

assembler 1 × × × × × × ×

C × × × × × × ×

COBOL × × × × × × ×

QMF Application Development Overview

4 QMF: Developing QMF Applications

Table 1. Callable interface support (continued)

CICS
under

OS/390

CICS
under
VSE

CMS TSO APPC SRPI Native
OS/390
batch

FORTRAN × × × × ×

PL/I × × × × × × ×

REXX × × × × ×

If you want to write SAA applications, you must use the callable interface in
one of the SAA languages that QMF supports.

For more information about the callable interface, see Chapter 3, “The Callable
Interface” on page 19.

Command interface
The QMF command interface allows you to create applications that submit
commands to QMF from an ISPF dialog. QMF communicates with the ISPF
dialog through the ISPF variable pool using this command interface.

The command interface is only available when ISPF is available. The
command interface is not available in CICS.

For more information about the QMF command interface, see Chapter 4,
“Using the Command Interface for Applications” on page 29.

Contrasting the callable and command interfaces
The differences between the callable interface and the command interface are:

Callable interface:

v Is available for all QMF-supported environments
v Does not require ISPF
v Does not require QMF to be started before you run your application
v Provides SAA Common Programming Interface for query

Command interface:

v Is available in all environments supported in QMF and ISPF
v Requires ISPF to be present and active
v Requires QMF to be started before the application is started
v Provides variables for communication between the ISPF application and

QMF

1. Assembler is not an SAA language.

QMF Application Development Overview

Chapter 1. QMF Application Development Overview 5

v Requires the programming language to be supported by ISPF

External formats for QMF objects
Your application can export QMF objects to a file outside of the QMF product;
for example, you can export a form to a CMS file, a TSO data set, or a CICS
data queue. Each object has a particular format that your application can edit
and transfer to another system, or import into QMF.

For more information about the externalized formats of QMF objects, see
Chapter 9, “Importing and Exporting QMF Objects” on page 77.

Command synonyms
QMF allows you to specify command synonyms for programs or procedures
that you code. These command synonyms allow end users to use your
programs and procedures just as they would use any QMF command.

For more information about command synonyms, see “Using command
synonyms” on page 73.

Other IBM products that bridge to QMF
You can use the following IBM products with QMF to expand the function of
QMF:

Application System (AS)
AS can issue QMF commands and define QMF queries. AS can then
use the results of the QMF queries as input to AS processes.

Data Extract (DXT)
QMF can invoke DXT™ End User Dialogs to allow the end user to
extract data from sources not directly supported by QMF.

ECF The Enhanced Connectivity Facility (ECF) allows a workstation user
to access host relational data. The workstation user uses ECF facilities
to send a request to the host to run a saved QMF query or procedure
and to download the retrieved data to the workstation.

GDDM
The Interactive Chart Utility (ICU), used by QMF to display charts, is
actually a feature of Graphical Data Display Manager (GDDM®).

ISPF Interactive System Product Facility allows the user to generate panels
that can interact with QMF via the command interface.

Lotus 1-2-3/M
The host version of Lotus® 1-2-3® can access QMF to perform
spreadsheet analysis on query results.

QMF Application Development Overview

6 QMF: Developing QMF Applications

Chapter 2. Using Procedures as Applications

You can write many applications entirely as procedures. You can create
procedures on your development system and either keep them for your
personal use or move them to your production system for public use.

If you are using QMF in the CICS environment, you can use QMF linear
procedures. If you are using QMF in the CMS, TSO, or native OS/390 batch
environments, you can also use REXX statements and functions in your QMF
procedures. REXX functions and procedures with logic are not available in the
QMF CICS environment.

This chapter focuses on information you need to know to use QMF
procedures to implement your application.

For information about how to create, build, and run a procedure, see Using
QMF.

Using ISPF services in a QMF procedure requires a few extra steps. For
information about running ISPF commands from a QMF procedure with logic
running under ISPF, see “Using ISPF commands from a procedure with logic”
on page 41.

Knowing when not to use Procedures

If you are writing an application that operates on a procedure in QMF
temporary storage, you cannot write your application as a procedure. This is
because, when you run a procedure, that procedure becomes the current
procedure in QMF temporary storage.

For example, if you write your application as a procedure, and code your
application to save the current procedure in QMF temporary storage, the
application saves itself, because it is the current procedure in QMF temporary
storage when it is running.

Initial procedures

An initial procedure is a procedure that runs immediately after your QMF
session starts. Use the DSQSRUN parameter to specify the name of this
procedure. You can use DSQSRUN:
v With the DSQQMFE command, when QMF is started interactively

© Copyright IBM Corp. 1983, 2002 7

v With the QMF START command, when QMF is started through the callable
interface

QMF runs the initial procedure differently depending on the type of QMF
session used. For more information about how QMF uses the initial
procedure, see “Interactive session with an Initial Procedure (DSQSRUN)” on
page 53.

In TSO, and native OS/390 batch, applications can also set program
parameters using a REXX EXEC as described by the DSQSCMD parameter of
the QMF START command. Because QMF CICS does not support REXX, in
CICS you must specify all program parameters on the START command using
DSQSMODE=INTERACTIVE. The default mode from the callable interface is
BATCH.

Considerations for writing initial Procedures
v By default, QMF reruns the initial procedure whenever the user issues the

END command in an interactive session of QMF started by DSQQMFE. The
DSQEC_RERUN_IPROC global variable specifies if the initial procedure is
rerun. The default value of this variable is 1 to rerun the procedure; 0
prevents the initial procedure from being rerun.
In callable interface programs, the initial procedure is never rerun, so this
global variable does not affect your callable interface programs.

v If you are writing initial procedures for use in an interactive QMF session,
you should avoid writing your initial procedure so that the current panel at
the end of the procedure is the Home panel. If the Home panel is the
current panel at the end of the initial procedure, QMF does not interactively
display a panel at the end of the procedure. If no severe errors occurred
and DSQEC_RERUN_IPROC is set to 1, QMF reruns the initial procedure
without interacting with the user. This results in an uninterruptible loop
that can appear as though QMF is not starting.
To avoid creating an uninterruptible loop, do one of the following:
– Make sure that the current panel at the end of the procedure is not the

Home panel.
– Make sure that the procedure contains either a QMF EXIT or an

INTERACT command.
– Set DSQEC_RERUN_IPROC to zero (0).

v When you specify values for substitution variables in initial procedures, the
number of ampersands (&) you must use before the name of the variable
can vary depending on your environment. For example, you can specify
DSQSRUN as follows:
DSQSRUN=INITPROC(&VAR1 = value)

Using Procedures as Applications

8 QMF: Developing QMF Applications

The number of ampersands you need to specify with VAR1 depends on if
QMF is running under CICS, CMS, TSO, or native OS/390 batch, if ISPF is
present, and if the program starting QMF is written in REXX.

Initial Procedures and Remote Unit of Work
The initial procedure must be stored at the system on which you start QMF
(the local system).

If you use the QMF CONNECT command from either your initial procedure
or the command line during an interactive session set up by an initial
procedure, you must reconnect to your original location before you can issue
an END command to reinvoke your initial procedure.

If you are still connected to the remote location, you receive an error.

Using QMF CONNECT within a procedure

The QMF CONNECT command lets you connect to another user ID or to a
remote DB2® database to use the remote unit of work support. You can use
this command within a linear procedure or a procedure with logic.

When you write procedures that use the QMF CONNECT command to access
remote databases, be aware of the following:
v If you are connected to a remote database and issue a RUN PROC

command, that procedure and all the objects used in that procedure must
be stored at the remote database.

v All QMF commands in the procedure are run in QMF temporary storage at
the system where QMF is running (the local system). However, all objects
used by these QMF commands (such as queries, procedures, or forms) must
be defined in the database at the current location (the remote system).
For more information about using the QMF CONNECT command and
remote unit of work support, see QMF Reference (for command syntax).

v All commands that affect the database (for example, SQL statements, QMF
queries, or EDIT TABLE updates) run at the current location.

v If the procedure contains system-specific commands (CICS, CMS, or TSO),
these commands run at the system where QMF is running (the local
system).
If your procedures contain system-specific commands that do not run on
the system where QMF runs, your procedure does not run successfully.

v Any files or data sets used in a system-specific command must exist on the
system where QMF is running (the local system).

Using Procedures as Applications

Chapter 2. Using Procedures as Applications 9

Substitution variables in procedures

You can use QMF substitution variables in linear procedures and procedures
with logic.

A substitution variable is any variable that you can use in a QMF command;
QMF manages these variables for you. A substitution variable is always
preceded by an ampersand (&). You can assign a value to a substitution
variable by setting global variables, by specifying values on the RUN
command, or by specifying values on the RUN command prompt panel. For
information on setting global variables, see “SET GLOBAL” on page 62.

See Using QMF if you need to learn more about using ampersands with
substitution variables in QMF.

Specifying values on the RUN command
You can assign a value to a substitution variable using the RUN command:
v In your linear procedure:

RUN PROC SCHEDULE (&&TYPE=’VACATION’

v In your procedure with logic:
"RUN PROC SCHEDULE (&&TYPE=’VACATION’"

If you issue the QMF RUN command from within a PROC or QUERY panel,
you do not need to specify the PROC or QUERY object types. RUN assumes
these values when you invoke it from their respective panels.

The value of &TYPE is available only to the procedure called SCHEDULE.

In this example:
v The variable value VACATION is surrounded by single quotes because the

value is a character string.
v TYPE is preceded by double ampersands (&&) to indicate that the value is

being set on the RUN statement to be passed to the procedure named
SCHEDULE. If the RUN statement specifies &TYPE, the procedure
containing this statement prompts the user for the value.

This value for the substitution variable is active only within the procedure that
defines it. The value is not active in any procedure or module called from the
defining procedure.

Specifying values on the RUN command prompt panel
If you run a query or procedure that contains a substitution variable, and this
variable is not assigned a value by a global variable or on the RUN command,
QMF presents a RUN command prompt panel. You can specify the value for
the variable on this panel.

Using Procedures as Applications

10 QMF: Developing QMF Applications

This value for the substitution variable is active only within the procedure that
defines it. The value is not active in any procedure or module called from the
defining procedure.

Prompting for variables in linear procedures
In a linear procedure, QMF scans the procedure for substitution variables and
resolves them before it processes any commands. The user is prompted for all
variables before the procedure runs.

Prompting for variables in procedures with logic
In a procedure with logic, the user is not prompted for variables until REXX
encounters the statement containing the variables. For example, if your
procedure with logic contains three statements that contain variables that
QMF must prompt you for, QMF prompts you three times—once for each
statement.

If you want a procedure with logic to prompt you for all the necessary
variable values at one time, like the linear procedure does, use a dummy
procedure. Suppose you want to be prompted once for the substitution
variables LASTNAME and DEPT_NUM, which occur on two different lines in
your procedure with logic as shown in Figure 3.

Add the following line to the beginning of your procedure with logic,
immediately following the comment lines:
"RUN PROC PROMPT_ME (&LASTNAME, &DEPT_NUM";

where PROMPT_ME is a procedure with logic containing a comment line and
no instructions, as shown in Figure 4 on page 12.

The completed procedure with logic looks like this:

/* This procedure runs two queries, displaying the report after each */
/* procedure has run. */

"RUN QUERY REG_QUERY (&&LASTNAME=&LASTNAME";
"INTERACT"
"RUN QUERY REG2_QUERY (&&DEPT_NUM=&DEPT_NUM";

Figure 3. Procedure with logic with variables

Using Procedures as Applications

Chapter 2. Using Procedures as Applications 11

Alternatively, you can use SET GLOBAL to prompt for all the values in your
procedure at the same time, as in the following:
"SET GLOBAL (LASTNAME=&LASTNAME,DEPTNUM=&DEPT_NUM";

Using REXX variables in procedures with logic

You can use REXX variables in a procedure with logic. The values for these
variables are known only within the procedure in which you defined them.
You can:
v Copy a REXX variable to a QMF variable with the SET GLOBAL command
v Copy a global variable to a REXX variable with the GET GLOBAL

command
v Use REXX variables in your REXX statements

For more information on REXX variables, see the REXX reference manual for
your system. For details on the GET GLOBAL and SET GLOBAL commands,
see QMF Reference.

QMF also provides a group of REXX variables for the SAA callable interface
that QMF sets after processing each QMF command. These variables provide
important information about the results of each command. You can use them
in your procedures with logic. For more information about these variables, see
“REXX language interface” on page 216.

Passing arguments to a procedure with logic

For procedures with logic, QMF provides an ARG option on the RUN PROC
command. This option lets you pass arguments, or values, to a procedure with
logic.

Use the ARG option when you are running a procedure that contains a REXX
PARSE ARG or ARG statement, as in the following example:

/* This proc is a dummy proc that provides prompting. */
/* This procedure runs two queries, displaying the report after each */
/* procedure has run */

"RUN PROC PROMPT_ME (&LASTNAME, &DEPT_NUM";
"RUN QUERY REG_QUERY (&&LASTNAME=&LASTNAME";
"INTERACT"
"RUN QUERY REG2_QUERY (&&DEPT_NUM=&DEPT_NUM";

Figure 4. Procedure with logic that prompts for variables

Using Procedures as Applications

12 QMF: Developing QMF Applications

PROC WILDE.SHOW_ARGS MODIFIED LINE 1

/**/
/* This procedure shows you how to use the ’ARG=’ option on the RUN */
/* PROC command. */
/**/
parse upper arg query_name form_name
"RUN QUERY" query_name "(FORM="form_name

The RUN command for this procedure is:
RUN PROC SHOW_ARGS (ARG=(query_name form_name)

Using the ARG option, you can also pass values between procedures.

Using REXX error-handling statements in procedures with logic

You can use REXX error handling techniques, such as the REXX SIGNAL
instruction, in a procedure with logic. In addition, you can use QMF
commands and variables with the REXX EXIT instruction to help clarify
nonzero return codes.

Branching to error-handling subroutines
The REXX signal on error instruction tells REXX to leave the current line and
branch to a label marked error when a nonzero return code is encountered.
This statement requires two parts:
v Signal on error

After every command, REXX puts the return code of the command in a
variable called rc.
If a command has a nonzero return code, REXX branches to the error label.
Signal on error returns errors from the QMF REXX procedure (ADDRESS
QRW) command environment, but not the REXX callable interface.

v Error label
The signal on error instruction requires that you provide a label that the
procedure can branch to if it encounters a nonzero return code. The label
precedes your error handling code. The return code is in the variable rc.
You can use this variable to branch to another subroutine, or you can use it
in your EXIT instruction, as in the following:
/* error handling code for a procedure with logic */
error:

exit rc

Using messages with the REXX EXIT statement
As the previous section shows, you can use the REXX EXIT instruction to exit
a procedure with logic. QMF always issues a message when it finishes
running a procedure with logic. If you use the EXIT instruction, the message
you see depends on these factors:

Using Procedures as Applications

Chapter 2. Using Procedures as Applications 13

v If the last QMF command encountered an error
v If the return code was zero

Table 2 shows which message you see based on the given conditions.

Table 2. Messages returned from QMF

Nonzero return
code from the last

QMF command
Procedure return

code Message at completion of procedure

No 0 OK, your procedure was run.

No nonzero
The return code from your procedure
was 8.

Yes 0 The error message provided by QMF.

Yes nonzero The error message provided by QMF.

An error message takes precedence over the return code message if you have
an incorrect QMF command and a nonzero return code.

If you want to show the error message from the last command and exit with a
QMF return code, use the MESSAGE command and the EXIT
DSQ_RETURN_CODE as in the following example:

The variables dsq_message_text and dsq_return_code are QMF-provided
REXX variables. (For a complete listing of these variables, see “REXX
language interface” on page 216.) You can use the MESSAGE command and
the dsq_message_text variable to store and display a message after further
processing has occurred, as in Figure 6 on page 15.

...
"MESSAGE (TEXT=’"dsq_message_text"’"
exit dsq_return_code

Figure 5. Showing the error message and return code

Using Procedures as Applications

14 QMF: Developing QMF Applications

For more information on the MESSAGE command, see “MESSAGE” on
page 60 .

Calling REXX programs from a procedure with logic

You might have procedures that call applications. When you call your REXX
callable interface application from a procedure with logic, be careful about the
number of ampersands (&) you specify for the substitution variables in your
application. This is especially true if the program being called contains a RUN
command with substitution variables, as in RUN QUERY WEEKLY_Q (&&DEPT=58.

Calling REXX programs without substitution variables
If your REXX program does not contain an imbedded RUN command that
includes substitution variables, use one of the following commands to invoke
your program:
v The ADDRESS instruction

This instruction establishes a command environment. (For more information
on command environments, see Chapter 5, “ADDRESS QRW: Using the
QMF Command Environment” on page 37.) If your program is named
PANDA, and you want to call it from within the CMS environment, your
command is:
ADDRESS CMS "PANDA"

v The CALL instruction
This instruction invokes a program. For the program named PANDA, the
command is:
CALL PANDA

v A function
You also can call the program PANDA as a function, as in the following:
answer = PANDA()

/* Monthly report */
Signal on error
"DISPLAY TABLE JUNE_INFO"
"PRINT REPORT"
Exit(0);
Error: Original_msg = dsq_message_text
/* Saves error message. */
"RUN PROC GENERAL_RECOVERY"
/* This proc generates */
/* new dsq_message_text. */
"MESSAGE (TEXT=’" Original_msg "’"
/* Display original error msg. */
Exit dsq_return_code;

Figure 6. Storing and retrieving messages in a procedure

Using Procedures as Applications

Chapter 2. Using Procedures as Applications 15

For more information on any of these commands, see the REXX reference
manual for your system.

You might consider removing the substitution variables from the RUN
command if you want to call your programs using one of the REXX
invocation calls. In that case, QMF prompts the user for the variables.

Calling REXX Programs that contain substitution variables
If your REXX application contains a QMF RUN command with a substitution
variable, you must invoke it using either CMS program_name or TSO
program_name.

Whether you are running a procedure with logic or a callable interface
program invoked by a procedure with logic, commands come into QMF the
same way. In this context, the callable interface program becomes a logical
extension of the procedure itself.

Consider the command:
RUN QUERY WEEKLY_Q (&DEPT=58

In a procedure with logic, use two ampersands on the substitution variable to
pass the variable to the query, as in the following:
"RUN QUERY WEEKLY_Q (&&DEPT=58"

If a substitution variable has only one ampersand, QMF resolves the variable
for the procedure itself, and cannot pass the variable to the query.

If you call a REXX callable interface application from a procedure with logic,
and that application contains the command RUN QUERY WEEKLY_Q (&DEPT=58,
QMF resolves the variable just as it would for the calling procedure. Because
only one ampersand is used, the variable is not passed to the query.

To pass variables to QMF from a REXX callable interface application called by
a procedure with logic, you have three choices:
v Use the CMS or TSO command to call the application.

When you call the application, QMF does not process any substitution
variables it encounters. In the preceding command, &DEPT=58 is passed to
the query, where the substitution variable is resolved.

v Treat all substitution variables in your application as though you were
using them in a procedure with logic.
Add an ampersand to every substitution variable so the procedure with
logic does not resolve it.

v Use global variables.

Using Procedures as Applications

16 QMF: Developing QMF Applications

You can define global variables at the start of your application and use
them throughout your QMF session.

Using Procedures as Applications

Chapter 2. Using Procedures as Applications 17

Using Procedures as Applications

18 QMF: Developing QMF Applications

Chapter 3. The Callable Interface

This chapter presents an overview of the QMF callable interface. For specific
information about the QMF callable interface for a particular language, see the
section in Appendix A, “Sample Code for Callable Interface Languages” that
describes the callable interface for that language:

Assembler
“Assembler language interface” on page 127

C Language
“C Language Interface” on page 150

COBOL
“COBOL language interface” on page 167

FORTRAN
“FORTRAN language interface” on page 184

PL/I “PL/I language interface” on page 200

REXX “REXX language interface” on page 216

What is the Callable Interface?

Programming languages can use the QMF callable interface to run QMF
commands. All SAA Query commands are supported through the callable
interface. The QMF callable interface provides standard interfaces for different
programming languages, and provides common storage and access to
program variables.

When an application program needs to run a QMF command, it must first
issue a call to a QMF-supplied routine to start communication between the
program and QMF. This call is made to the QMF-supplied interface routine.
QMF supplies a routine for each supported language.

The application program can issue one or more QMF commands after the
initial start call. The application program calls the QMF-supplied routine to
issue each QMF command.

After the QMF command finishes processing, QMF supplies a return code that
indicates the status of QMF. The callable interface gathers other information
about the processing of the command and stores this information in variables
accessible to both QMF and the application program. These variables are
contained in either a variable pool or in an interface communications area. When

© Copyright IBM Corp. 1983, 2002 19

the callable interface returns control to the calling application program, the
application can refer to these variables but should not alter them.

When the application program no longer needs to use QMF, the program
issues a call to terminate communication between the program and QMF. This
call is made to the QMF-supplied routine.

Considerations for using the QMF Callable Interface
v A call to QMF returns control to the calling application program only after

QMF finishes processing the QMF command.
v QMF is in an inactive state when not processing a call.
v The application program and QMF communicate with return codes and

variable data stored in the variable pool or in the interface communications
area.

v All QMF commands must be coded in uppercase English letters.
If you are using a QMF national language feature (NLF), your QMF
commands must be written in the NLF language specified as the presiding
language, and written in (or folded to) uppercase.

v The maximum length of the passed commands is 256 bytes.

Figure 7 shows how the application passes commands through the callable
interface to QMF.

Figure 7. The application uses the QMF callable interface to communicate with QMF.The Callable Interface

20QMF: Developing QMF Applications

The results of issuing a command through the callable interface are generally
the same as they are if you issue commands interactively.

Defining the Interface Communications Area (DSQCOMM)

QMF provides an interface communications macro for each supported
programming language. This macro contains the following information:
v The interface communications area (DSQCOMM) or communications

variables
v Definitions of return and reason codes
v Definition of the function calls to QMF

This macro defines some storage that contains the variables described in the
preceding list. This storage is the callable interface communications area, and
the variables stored in this area are accessible to both QMF and the callable
interface application, although only QMF should alter the values. The
application program should view these variables as read only.

The REXX callable interface uses interface communications variables provided
by QMF rather than using a communications area.

The QMF callable interface communications area is required for all callable
interface calls. Storage for the callable interface communications area is
allocated by the program that is using QMF.

The START command establishes a unique instance or occurrence of a QMF
session. The START command can establish only one QMF session:
v In a TSO address space
v In a single CMS virtual machine
v From a single CICS transaction

When running the START command, QMF updates the interface
communications area or variables.

The interface communications area or variables must never be altered by the
application program, with the following exceptions:

DSQ_COMM_LEVEL
Set DSQ_COMM_LEVEL to the value of
DSQ_CURRENT_COMM_LEVEL to identify the level of DSQCOMM.
This does not apply to REXX.

DSQ_INSTANCE_ID
If you call a callable interface program from within QMF, you need to

The Callable Interface

Chapter 3. The Callable Interface 21

set the DSQ_INSTANCE_ID to zero (0) on the first call so that QMF
resets the variable to the value set by the initial START command.

All calls that follow the START command must pass the address of the
interface communications area that corresponds to the QMF instance. The
application program is responsible for pointing to the correct interface
communications area.

Each supported language has a unique communications macro that describes
the interface communications area. Application programs must reference
variables by variable name rather than value if they are to be portable,
because the values can be different on other systems.

The interface communications area or variables contain the information in
Table 3, which must not be altered by the calling program:

Table 3. DSQCOMM fields that must not be altered

Field Description

Return code Indicates the status of QMF processing after QMF processes a
command.

Instance
identifier

Identifies the instance of QMF that was started by the START
command.

Completion
message ID

Contains the message ID of the message that QMF displays at the
user’s terminal, if the command were issued there.

This field is set at the completion of every QMF command. It
contains the message QMF displays at the end of a command.

Query message
ID

Contains the message ID of a QMF message resulting from a RUN
QUERY command. This is the message ID of the message that is
displayed in a user’s query.

This field is set when an error occurs while a query is running. It
contains the message QMF displays within the query object at the
end of a command.

START
command
parameter in
error

Contains the parameter in error when the START command fails
because of a parameter error.

Cancel indicator Indicates if the user canceled the command processing while QMF
was running the command.

Completion
message

Contains the completion message that QMF displays at the user’s
terminal.

The Callable Interface

22 QMF: Developing QMF Applications

Table 3. DSQCOMM fields that must not be altered (continued)

Field Description

Query message Contains the query message text that resulted from a RUN QUERY
command. This is the text that QMF displays in a user’s query.

For example, if you run a query object with an error, QMF displays
a message describing the error that prevented the query from
running. Query message then contains this error message text.

Return Codes

Return codes are returned after each call to the QMF callable interface. Return
code values are described by the communications macro shipped with QMF.

If you want your applications to be portable across systems, the applications
must reference the values of these codes by the variable names, because the
values can be different on other systems.

Return codes from the callable interface indicate the following conditions:
v QMF successfully processed the request.
v QMF processed the request despite a warning condition.
v QMF did not process the command correctly.
v Due to a severe error, this instance of QMF has ended.

For a definition of each return code, see the appropriate programming
language section of this guide.

Commands for using the callable interface

You can use the callable interface to use any QMF command that you would
use in a procedure. However, there are three commands that have special
syntax for the callable interface:
v START
v GET GLOBAL, extended syntax
v SET GLOBAL, extended syntax

START works only in the callable interface. To use GET GLOBAL and SET
GLOBAL in a callable interface application written in a language other than
REXX, use the extended syntax. The extended syntax of the SET GLOBAL
command allows you to set global variables that have values up to 32 768
characters long. For more information on using the GET GLOBAL and SET
GLOBAL commands in an application, see “GET GLOBAL” on page 56 and
“SET GLOBAL: Extended syntax” on page 64.

The Callable Interface

Chapter 3. The Callable Interface 23

For information about these and other commands you can use in a callable
interface application, see Chapter 8, “QMF Commands in Applications” on
page 51. To see examples of the START and SET GLOBAL commands for each
language, see the sample program for each language:

Assembler
“Assembler programming examples” on page 131

C Language
“C language programming example” on page 154

COBOL
“COBOL programming example” on page 171

FORTRAN
“FORTRAN programming example” on page 187

PL/I “PL/I programming example” on page 203

REXX “REXX programming example” on page 221

Starting QMF from an application
Before you can run any other command from an application, you must start
QMF. When using the callable interface, you start QMF by issuing the START
command. You can have only one QMF session at a time.

Your application can issue a START command to test if QMF has already been
started. If QMF has not been previously started, it starts. If QMF was
previously started, the return code is nonzero, and you receive the following
message number and message:
DSQ50719 QMF already active. Secondary session not permitted.

With the REXX callable interface, you also can run the following program:

If your START command results in an error that is not severe (a return code
of 4 or 8), QMF starts with errors. In this case, you can issue the EXIT
command to stop QMF. You might want to issue the START command again.
If the error persists, inspect the contents of the interface communications area
or the QMF trace data output for sources of the error.

To pass parameters to QMF, specify the desired command keywords on the
START command.

/* test to see if QMF is active */
"SUBCOM QRW"
if rc = 0

then say "QMF is active"
else say "QMF is not active"

The Callable Interface

24 QMF: Developing QMF Applications

For details about the syntax and keywords used with the start command, see
“START” on page 66.

Running your callable interface application

When you run your callable interface application, you must set up your
running environment as though you were going to run interactive QMF.

For specific information about setting up your environment and compiling
and running your callable interface application, see the appropriate coding
sample for your language in Appendix A, “Sample Code for Callable Interface
Languages” on page 127.

Using the callable interface from within QMF

Note to CICS users
You cannot use the callable interface from within QMF while in the CICS
environment.

In all the environments supported in QMF, except CICS, you can use the
callable interface from within QMF to run applications that modify QMF
temporary storage areas. For example, you might want to export or import
files through the callable interface even though you are in the middle of a
QMF session.

You can do this by using the CMS or TSO command to call an application.
From the application, you can run any valid QMF command. Because QMF is
already active, you should not issue the START command.

You must set the DSQCOMM instance identifier (DSQ_INSTANCE_ID) to zero
(0) before your first call to QMF. QMF determines the current instance and
updates DSQ_INSTANCE_ID for use in subsequent QMF calls.

Error handling

Unless you are running QMF in a CICS environment, you can use the
QMF-provided REXX variables or the similar values in the DSQCOMM
communications area for error handling in your applications.

For example, the REXX variable dsq_message_text or the message text field in
the DSQCOMM contains a QMF message.

The Callable Interface

Chapter 3. The Callable Interface 25

In REXX, QMF assigns one of the following values to the variable
dsq_return_code at the completion of every QMF command:

dsq_success
Successful completion of the command

dsq_warning
Normal completion with warnings

dsq_failure
Command did not run correctly

dsq_severe
Severe error; QMF session terminated

For the languages other than REXX, QMF places the same value in the return
code field DSQ_RETURN_CODE of the DSQCOMM.

You can use these return codes and values in your applications. The following
example shows how to use error-handling variables in a REXX callable
interface application:

QMF also provides variables that contain message numbers and message text.

For a complete list of variables or fields in each DSQCOMM, see the
appropriate section for each language in Appendix A, “Sample Code for
Callable Interface Languages” on page 127.

Running callable interface programs under CICS

To run programs that use the QMF callable interface, install them into CICS
using your normal method of installing CICS programs. For more information
about applications in CICS, see CICS for VSE/ESA Application Programming
Guide. For more information about installing QMF application programs, see
CICS for VSE/ESA System Definition Guide.

In addition to the normal CICS requirements, the following considerations
apply to all QMF callable interface programs running on CICS:
v Environment

...
call dsqcix "CONVERT QUERY MYQUERY"
if dsq_return_code ¬= dsq_success then
call dsqcix "PRINT REPORT"
if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure then ...

The Callable Interface

26 QMF: Developing QMF Applications

When your program calls the QMF product, your program takes on the
same characteristics as the interactive QMF product; it becomes a very large
conversational program.
QMF is an assembler language program that contains CICS commands. It
can be linked with other assembler language programs or with programs in
one of the high-level languages (VS COBOL II, PL/I, or C/370¬). When you
call QMF using a high-level language, the high-level language program
must be linked first, and the resource definition online (RDO) program
definition must specify that high-level language. Each high-level program
has specific CICS considerations and restrictions. Refer to the high-level
language programming guide and to the language considerations section in
CICS Application Programming Guide.
In CICS, if you want to override any of the default QMF start parameters,
you must specify these keywords on the START command. For example,
the default mode from the callable interface is BATCH. To run an
interactive QMF session you must issue the START command using
DSQSMODE=INTERACTIVE.

v Program execution levels
For QMF Version 3 Release 1 Modification 1, the interface between the
QMF-supplied interface and the main QMF program was changed to run
on a lower program level than the user’s application program. Because of
this change, user programs are not affected by environmental conditions
such as the handle conditions set by QMF.

Note to CICS/OS/390 users
To use the QMF 6 callable interface after migrating from 3.1, you must
link-edit the programs that currently use the QMF callable interface. If
you are migrating from a later QMF release, you do not need to
link-edit again.

v CICS region (OS/390) or partition (VSE) considerations
The user program containing the QMF interface communications module
and the main QMF module must run in the same region or partition. QMF
resources, as described during QMF installation, must also be allocated to
the CICS region or partition that runs QMF.

v Database
– DB2 for VSE or VM:: When you invoke QMF through the callable

interface, your CICS transaction runs QMF using the database packages
that have already been installed, and no further action is required.

– DB2 UDB for OS/390: The CICS transaction that invokes your program
must also be described to DB2 by a Resource Control Table (RCT) entry.
For more information about RCT entries, see DB2 UDB for OS390
Administration Guide and CICS System Definition Guide.

The Callable Interface

Chapter 3. The Callable Interface 27

The RCT PLAN name should be the same for both the callable interface
program and the QMF product.

The Callable Interface

28 QMF: Developing QMF Applications

Chapter 4. Using the Command Interface for Applications

QMF provides an application interface to use QMF services from an ISPF
dialog. This interface is the command interface. The command interface allows
you to issue QMF commands from an ISPF dialog running under QMF. Using
this interface, QMF communicates with the dialog through the ISPF variable
pool, as shown in Figure 8.

Note to CICS users
The QMF command interface requires ISPF to run, but ISPF does not run
in the CICS environment. Therefore, you need to use the QMF callable
interface for application development under CICS.

To use the command interface effectively, you need to understand ISPF
services and variable pools. See ISPF: Dialog Management Guide and Reference
for more information on using ISPF.

Figure 8. QMF command interface application interacting with QMF

© Copyright IBM Corp. 1983, 2002 29

Invoking the command interface

The command interface is a program named DSQCCI. You can invoke it from
a program through the ISPF SELECT service.

When you invoke the command interface through the ISPF SELECT service,
pass the uppercase QMF command to be run in the PARM operand. Issue the
following command:
SELECT PGM(DSQCCI) PARM(qmf_command)

All QMF commands specified as parameters to the command interface must
be in uppercase, regardless of the QMF profile setting. ISPF does not
automatically convert the commands from lowercase to uppercase, so if you
specify your QMF commands in lowercase, QMF does not recognize them. If
you wish prompting to be performed while QMF executes your QMF
command, code the INTERACT command right in the front of your QMF
command. Refer to “INTERACT” on page 57 for more information on the
INTERACT command.

On the invocation, do not specify the NEWPOOL or NEWAPPL option.
Omitting the NEWPOOL or NEWAPPL options ensures that the command
interface can access your application’s variables. The command interface uses
the shared pool to communicate between QMF and your application.

The SELECT service requires you to use double ampersands on a RUN
QUERY command. This prevents ISPF from interpreting the variable as one of
its own.

The END command

When issued by the end user while the command interface (DSQCCI) is
running, the END command terminates the DSQCCI invocation and returns
control to the calling application. The QMF session remains active. Only an
abend (abnormal termination) terminates a QMF session during a command
interface invocation.

The EXIT command, or a severe error during a command interface invocation,
causes QMF to set DSQCSESC to mark the session for termination. When the
program that called DSQCCI ends and returns control to QMF, the QMF
session then terminates.

Using the Command Interface for Applications

Chapter 4. Using the Command Interface for Applications 31

Using variables in the command interface

The STATE command provides the current value for each QMF-provided
variable. It can be used only in the command interface. When you issue this
command, you can place the QMF variables in the ISPF variable pool through
the VPUT command. Table 4 shows the subset of the available QMF variables
that QMF places into the ISPF variable pool.

Table 4. QMF variables in the ISPF variable pool

Variable type Variable name Description

STATE
command

DSQAAUTH

DSQABATC

DSQACMDM

DSQACRSR

DSQADBCS

DSQADBMG

DSQAIACT

DSQAITEM

DSQAITLO

DSQAITMN

DSQAITMO

DSQALANG

DSQAMODL

DSQAMODP

DSQAOGRP

DSQAPCAS

DSQAPDEC

DSQAPLEN

DSQAPLNG

DSQAPPFK

DSQAPPRT

DSQAPRMP

DSQAPSPC

DSQAPSYN

DSQAPTRC

DSQAPWID

DSQAQMF

DSQAREVN

DSQAROWS

DSQASUBI

DSQASUBP

DSQATRAC

DSQAVARN

QMF updates these variables when
your application issues a STATE
command.

CONVERT
command

DSQCLnnn

DSQCQnnn

DSQCQCNT

DSQCQLNG

DSQCQTYP

QMF updates these variables when
processing a CONVERT command.

Using the Command Interface for Applications

32 QMF: Developing QMF Applications

Table 4. QMF variables in the ISPF variable pool (continued)

Variable type Variable name Description

Command
message

DSQCATTN

DSQCIM00

DSQCIMnn

DSQCIMID

DSQCIMNO

DSQCIMSG

DSQCSESC

QMF updates these variables each
time it processes a command
issued by the command interface.

Query
message

DSQCIQ00

DSQCIQnn

DSQCIQID

DSQCIQMG

DSQCIQNO

DSQCISQL

QMF updates these variables when
RUN QUERY returns an error
message.

To use QMF variables in the ISPF variable pool, use the 8-character name for
the variable. For a description of the values and extended names of these
variables, see Appendix E, “QMF Global Variable Tables” on page 257.

Command interface return codes

Return codes for the command interface are the same regardless of the
language of your application. The return code can be positive or zero. A value
of zero indicates successful execution. A positive value indicates that the
execution failed or was in some way abnormal.

Return codes appear in a variable in the user’s EXEC or CLIST. If you run a
REXX EXEC, the return code is in the REXX variable called RC; if you run a
CLIST, the return code is in the CLIST variable &LASTCC.

The following example shows an EXEC that examines a return code.

Using the Command Interface for Applications

Chapter 4. Using the Command Interface for Applications 33

Example

Your application contains the following code:
ADDRESS ISPEXEC SELECT PGM(DSQCCI) PARM(RUN QUERYA (FORM=FORMA))
Select

When (RC = 0) Then nop
When (RC = 64) Then

Say "You must run QMF with ISPF to use command interface."
When (RC = 100) Then

Say "You need to start QMF before you begin your application"
Otherwise

Say "Unexpected error ("RC") from QMF command interface."
End

The code runs a query and then tests for an error using REXX RC.

You can place code for handling errors in program modules as well as in
EXECs or CLISTs.

Return codes 0 through 16
Return codes 0 through 16 describe the QMF processing of the command
passed with the command interface. When the command interface returns one
of these codes, it also returns the values of the QMF command message
variables in the application’s ISPF shared pool. The codes are shown in
Table 5.

Table 5. Return codes 0 through 16

Value Explanation

0 Successful execution

4 QMF session marked for termination by an EXIT or END command

8 Execution failed, but error didn’t mark the session for termination

16 Severe error: session marked for termination

A return code of 4 occurs only on the command that caused the session to be
marked for termination. If the application then attempts to run another
command, QMF returns another return code value to the user.

Return comes of 20 or more
These codes usually reflect some failure in the command interface (DSQCCI).
The failure has made it impossible to copy a variable into the application’s
shared pool. As a result, the QMF variables might be invalid, or perhaps they
haven’t been set. The same can be true of the STATE variables if your

Using the Command Interface for Applications

34 QMF: Developing QMF Applications

program uses the STATE command. (A variable has been “set” if it has been
copied into the application’s shared pool.)

These return codes usually indicate more serious errors than those in the 0
through 16 range. Some could require the services of your IBM Support
Center.

The following table contains explanations of the return codes with values of
20 or more. Shared variables refers to the QMF variables (and the STATE
variables, if the current command is the STATE command).

For some codes, the command was run but the shared variables weren’t set.
This might seem puzzling if the command was a STATE command. What this
means is that QMF ran the STATE command properly. QMF then expected the
command interfaceto set the updated shared QMF and STATE variables;
however, the command interface failed to do this, for the reason given in the
explanation of the error code. The codes are shown in Table 6.

Using the Command Interface for Applications

Chapter 4. Using the Command Interface for Applications 35

Table 6. Return codes of 20 or more

Value Explanation

20 A user exit routine called the command interface. These calls are
always invalid. The command passed to the command interface was
not run. The shared variables weren’t set.

24 An error occurred in an ISPF VCOPY command. The command passed
to the command interfacewas run. The shared variables weren’t set.

32 An error occurred in an ISPF VREPLACE command. The command
passed to the command interface was run. The shared variables
weren’t set.

36 An error occurred in an ISPF VPUT command. The command passed
to the command interfacewas run. The shared variables weren’t set.

40 An error occurred in an ISPF VREPLACE command. This code applies
only to the execution of the STATE command. The command passed to
the command interface was “run”, but the shared variables weren’t set.

44 An error occurred in an ISPF VPUT command. The code applies only
to the execution of the STATE command. The QMF variables were set,
but not the STATE variables.

60 Invalid call to the command interface. For example, the user might
have invoked an application from a QMF prompt panel, and the
application invoked the command interface. The command passed to
the command interface was not run. The shared variables weren’t set.

64 Not invoked in an ISPF environment. This error is issued when
DSQCCI is run and ISPF is not active. For example, the user could
have called DSQCCI without using an ISPF SELECT PGM command.

100 Failure to locate anchor. This error occurs when the application tries to
issue a QMF command without having QMF active. You need to start
QMF before you begin your application. The command passed to the
command interface was not run. The shared variables weren’t set.

104 Failure to locate anchor. The command passed to the command
interface was not run. The shared variables were set but aren’t valid.

Using the Command Interface for Applications

36 QMF: Developing QMF Applications

Chapter 5. ADDRESS QRW: Using the QMF Command
Environment

Note to CICS users
REXX is not supported in QMF CICS; therefore, ADDRESS QRW does
not work in the CICS environment.

The REXX language always operates in a command environment that
determines the default resolution of your commands. The default command
environment is CMS or TSO, depending on your operating system.

When QMF is started, you can establish QMF as the default command
environment through the REXX ADDRESS command. You can use this
command alone or before a QMF command:
ADDRESS QRW
ADDRESS QRW command

With ADDRESS QRW, QMF remains the default command environment until you
issue another ADDRESS command. With ADDRESS QRW command, QMF is the
command environment for that command only.

When you are using a QMF procedure with logic, QRW is the default
command environment.

Although QMF behaves the same whether you use the callable interface or the
REXX command environment, ADDRESS QRW is not part of the SAA Query CPI.
Use this command only if you do not plan to port your application to another
SAA query environment.

The following example shows how to use the QMF command environment:

© Copyright IBM Corp. 1983, 2002 37

...
call dsqcix "START (DSQSMODE=INTERACTIVE"
if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure

then exit dsq_return_code

ADDRESS QRW
"RUN PROC MONDAY_P"
if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure

then exit dsq_return_code

"EXIT"
if dsq_return_code=dsq_severe | dsq_return_code=dsq_failure

then exit dsq_return_code...

Figure 9. Example of using the QMF command environment

38 QMF: Developing QMF Applications

Chapter 6. Writing QMF Applications that Use ISPF

You can write applications that have their own user interfaces and bypass all
the QMF panels. One way to write these applications is to use ISPF to help
you create your own panels, and pass the user’s entries to QMF as variables.
You can also take advantage of other ISPF services to create or read QMF
objects.

Note to CICS users
ISPF does not run in the CICS environment, so ISPF services are not
available under CICS.

ISPF helps you provide an end-user interface on mainframe systems. You can
use ISPF with the QMF callable interface or command interface.

This chapter outlines considerations for using the callable interface with ISPF.
For general information about using the callable interface, see Chapter 3, “The
Callable Interface” on page 19. For information on using the command
interface, see Chapter 4, “Using the Command Interface for Applications” on
page 29.

Starting and running QMF from an ISPF application

The callable interface works with ISPF the same way it works with any other
program. However, there are a few considerations:

The callable interface must match the language of Your ISPF dialog

If your ISPF dialog is a PL/I program, for example, you must use the QMF
callable interface for PL/I.

You must use the correct language identifier

You must start your ISPF application with an ID of DSQn, where n is a
National Language Feature (NLF) identifier. This application ID prevents QMF
from overriding your ISPF environment, such as the function key settings and
labels. To start the application that starts QMF, use the following ISPF
statement:
SELECT PGM(MYPROG) NEWAPPL(DSQn)

© Copyright IBM Corp. 1983, 2002 39

where n is the NLF identifier. The PL/I program MYPROG then starts QMF
using the callable interface START command.

The ID DSQn ensures that the ISPF environment remains intact even after
QMF is started.

For a list of NLF identifiers, see Table 7 on page 68.

Use GET GLOBAL or SET GLOBAL Iistead of the STATE command

The GET GLOBAL and SET GLOBAL commands work for all the QMF global
variables; the STATE command works only for variables containing state
information. See tables of these variables in Appendix E, “QMF Global
Variable Tables” on page 257.

Running queries that contain variables

Your applications can run queries that contain variables. You can run these
queries from an application that uses ISPF services in one of three ways:
v Use ISPF file tailoring services.

With this technique, you represent the query by an ISPF file tailoring
skeleton. In that skeleton, the portions of the query that can change appear
as ISPF dialog variables. After giving these variables the proper values,
your program starts certain ISPF file-tailoring services. The result is a
sequential file containing the query.
The program can then import the query into QMF temporary storage and
have QMF run it. The requisite IMPORT and RUN commands can be run
through the callable interface or command interface.
To use this technique, you must know how to define ISPF dialog variables
in your program using the ISPF VDEFINE service. See ISPF: Dialog
Management Guide and Reference

v Use the Program Development Facility (PDF) editor to create QMF objects
You can use the PDF editor with PDF edit macros to design and control
data entry to queries, procedures, forms, and profiles. You can write PDF
macros using REXX programs.

v Create a query using an ISPF dialog.
To create a file that contains an SQL query, your program can use ISPF
display services to display a screen and create a file based on input from
the user. This file can then be imported into QMF and run.

Writing QMF Applications that Use ISPF

40 QMF: Developing QMF Applications

Invoking a program from a QMF procedure with logic under ISPF

If you are running QMF under ISPF, you must use the ISPF SELECT service to
call your callable interface program or REXX programs from a procedure with
logic. You must use the PGM keyword to tell ISPF that you are running your
callable interface program as an ISPF dialog function. The syntax for this
command is as follows:
ADDRESS ISPEXEC "SELECT PGM(programname)"

For REXX programs, you use the CMD keyword to tell ISPF that you are
running your program as an ISPF dialog function. The syntax for this
command is as follows:
ADDRESS ISPEXEC "SELECT CMD(cmdname)"

or
ADDRESS ISPEXEC "SELECT CMD(cmdname parameters)"

cmdname is the name of your callable interface or REXX program.

Using ISPF commands from a procedure with logic

Whenever you start QMF under ISPF, QMF is started as an ISPF program.
Therefore, to run any ISPF commands from a QMF procedure with logic
running under ISPF, you must transfer from the QMF program dialog to an
ISPF command dialog. To do this, you must issue an ISPF SELECT CMD from
your QMF procedure.

To set the correct ISPF environment and run a REXX program containing your
ISPF commands, use the following ISPF SELECT command with the CMD
keyword:
ADDRESS ISPEXEC "SELECT CMD(userprogram)"

userprogram is a REXX program that contains your ISPF commands.

For example, if the REXX program that contains your ISPF commands is
called DIALOG, include the following command in your procedure with logic:
ADDRESS ISPEXEC "SELECT CMD(DIALOG)"

For more information on ISPF, see ISPF: Dialog Management Guide and Reference

You also can use a QMF CMS or TSO command to run your REXX program
containing ISPF commands, for example CMS DIALOG or TSO DIALOG. QMF
issues the ISPF SELECT CMD statement for you.

Writing QMF Applications that Use ISPF

Chapter 6. Writing QMF Applications that Use ISPF 41

If you are running QMF under ISPF and your procedure with logic starts a
program requiring ISPF services, your procedure must start this program
using the ISPF SELECT CMD environment as described in the preceding
examples. For example, suppose you are running QMF under ISPF and your
procedure with logic starts DB2’s DSN command. Because the DSN command
uses ISPF services, you should use one of the following commands to issue
the DSN command:
ADDRESS ISPEXEC "SELECT CMD(DSN)"

or
ADDRESS ISPEXEC "SELECT CMD(DSNEXEC)"

where DSNEXEC contains the ADDRESS TSO DSN statement.

Callable interface considerations

If you want to use the LIBDEF function in your QMF applications that were
link edited prior to QMF Version 7 and that use the callable interface, you
must re-link edit your applications using the QMF Version 7 interface module.

Using the EDIT command with ISPF

When you run your QMF application under ISPF, you can edit your QMF
SQL query or procedure using the following commands:
EDIT QUERY
EDIT PROC

If you issue the QMF EDIT command from within a PROC or QUERY panel,
you do not need to specify the PROC or QUERY object types. EDIT assumes
these values when you invoke it from their respective panels. By default, the
QMF EDIT command places your procedure or query in a PDF editor session.
QMF starts the PDF editor using the QMF application ID DSQn, where n is
the NLF identifier. QMF also sets the function keys and the location of the
command line to match your QMF application.

To override this default, use the EDIT QUERY and EDIT PROC commands as
follows:
EDIT QUERY (E=name
EDIT PROC (E=name

name can be either of the following:
v An editor available to you

Writing QMF Applications that Use ISPF

42 QMF: Developing QMF Applications

v The name of a REXX program that specifies an application ID other than
DSQE. You might want to use an application ID different from the QMF
application ID if you want to have function keys different from those QMF
provides.

If you are using PDF EDIT options that require PDF PROFILE data set
members, you must create those members. For example, the PDF EDIT
RECOVERY option requires a DSQnEDRT PROFILE data set member (where
n is the NLF character) that must exist before you use the EDIT command.

For more information about the QMF EDIT command, see online help and
QMF Reference.

Using ISPF to debug applications

The QMF trace facility only traces QMF messages and commands. To trace the
ISPF commands of your application, write the messages to the ISPF log file or
data set. This ISPF service complements the QMF Trace facility described in
Chapter 10, “Debugging Your QMF Applications” on page 123.

Using ISPF log service
Use the ISPF log service to write a message to the ISPF log file. For example,
in REXX, the ISPF command to write a message to the ISPF log is:
ADDRESS ISPEXEC LOG MSG (message-id)

message-id is the identification of the message that is to be retrieved from the
message library and written to the log.

Using PDF dialog test
If your installation has PDF, you can use the Dialog Test service (log option)
to browse the contents of the log file or data set. You can also print the log
file or data set when you exit ISPF.

The Dialog Test service has many other useful options for debugging your
application. You can perform debugging interactively. You can run all or
portions of your application, examine the results, make changes, and rerun it.
You can also use Dialog Test to:
v Start selection panels, command procedures, and programs
v Display panels
v Add variables and modify variable values
v Run ISPF dialog services
v Add, modify, and delete breakpoint definitions
v Add, modify, and delete function and variable trace definitions

Writing QMF Applications that Use ISPF

Chapter 6. Writing QMF Applications that Use ISPF 43

The trace (TRACES) option of the Dialog Test service enables you to create,
change, and delete trace definitions. Therefore, you can monitor dialog service
calls and dialog variable usage. During processing, if any of the trace
definitions are satisfied, trace output is written to the ISPF log. You can use
the LOG option of Dialog Test to browse the ISPF log, or you can examine the
printed output when you exit ISPF.

For more information about ISPF services in general and Dialog Test in
particular, refer to ISPF Dialog Management Guide and Reference

Writing QMF Applications that Use ISPF

44 QMF: Developing QMF Applications

Chapter 7. Writing Bilingual Applications

Many businesses operate in several different countries, or in multilingual
countries, where interactive applications need to run in several different
national languages. Beginning with Version 3.2, you can write one English
application and run it in any national language that QMF supports.

A QMF environment in a language other than English is a National Language
Feature (NLF). An NLF provides a user with a QMF session that is tailored to
a specific language. A German NLF, for example, allows you to operate QMF
in a German language environment.

QMF provides bilingual support for commands and forms. You can run
English QMF commands and display English forms in any NLF, or write
translatable applications. This chapter provides information about working
with QMF in multiple or non-English language environments.

Creating bilingual objects for your applications

The objects in a bilingual application are like any other QMF object. The key
is that you either create or save them in English. How you do this depends on
the specific object:

Queries
You can create prompted and QBE queries in your native language, or
you can create SQL queries in English.

Forms Always create forms in the presiding language, and then save them,
either using the default language on the SAVE command (ENGLISH)
or the presiding language.

The global variable DSQEC_FORM_LANG controls which language is
used for the SAVE command. The default value is 1 for English. A 0
value specifies that the forms are to be saved in the presiding session
language.

Procedures
You can create procedures in either English or the presiding language.

You can translate a form that you create and save in an NLF to English by
issuing a SAVE command. For example, in French, the command to save a
form called SEMAINE_F as WEEKLY_F in English is:
SAUVER FORMAT SEMAINE_F EN WEEKLY_F (LANGUE=ANGLAIS

© Copyright IBM Corp. 1983, 2002 45

This converts your NLF form to an English form that you can use in your
bilingual application.

Using the command language variable

You can begin using English commands in an NLF session when you have the
objects you need for your application. To do this, set the presiding language
variable, DSQEC_NLFCMD_LANG, to English. This variable lets you switch
between English and the presiding language of the NLF session.

Assuming your application is a procedure named WEEKLY_P, you would use
the following commands:

These commands can be part of any valid QMF application, from an initial
procedure to a high-level language program, but they must be in this order.
The commands work in the following way:

Saving the presiding language value

The GET GLOBAL command saves the value for the presiding language in a
variable called CURR_LANG. When that value is saved, you can reset
DSQEC_NLFCMD_LANG to the value for English, 1.

Running your application

When your QMF session is set to English, you can run your English
application. Any commands the user enters must be in English. However, if a
user presses a function key, the underlying command is assumed to be in the
presiding language.

QMF assumes that prompt panels are in the user’s presiding language. For the
EXPORT and IMPORT command prompt panels, the default file type is in the
presiding language, too.

If the NLF provides uppercasing options in the profile, QMF adheres to the
user’s presiding language option, even when the user runs English
commands.

Returning to the presiding language

After your application ends, you should reset the command language variable
to the original value.

"GET GLOBAL (CURR_LANG=DSQEC_NLFCMD_LANG"
"SET GLOBAL (DSQEC_NLFCMD_LANG=’1’"
"RUN PROC WEEKLY_P"
"SET GLOBAL (DSQEC_NLFCMD_LANG=CURR_LANG"

Writing Bilingual Applications

46 QMF: Developing QMF Applications

Using an initial Procedure in a bilingual application

If your application starts QMF and runs an initial procedure, QMF runs that
procedure every time the user issues the END command. QMF terminates if
this procedure encounters an error. For example, if the user is running in
English and issues an END command in the presiding language, QMF
interprets the command as an error and terminates.

You can avoid this situation in one of two ways:
v Change the initial procedure to handle bilingual applications.

A bilingual initial procedure includes the commands shown in Figure 10.

v Avoid running the initial procedure after the END command.
You can set the variable DSQEC_RERUN_IPROC to 0 so that QMF does not
run the initial procedure when the user issues the END command.

Using English commands

For most QMF commands, you must change the presiding language variable
before you can run the command in English. To display a prompt panel or
message in a presiding language, however, some English commands must run
in any NLF, even when the presiding language variable is not set to English.

For example, if you have an interactive application that you want to write in
English and run in an NLF, you need to use the MESSAGE command to give
the user customized messages. In addition, you need the INTERACT
command to display the message, as in the following example, which can be
run in a French NLF session:

The following commands work in any NLF:

"GET GLOBAL (CURR_LANG=DSQEC_NLFCMD_LANG"
"SET GLOBAL (DSQEC_NLFCMD_LANG=0"...
/* QMF commands in the presiding language */...
"SET GLOBAL (DSQEC_NLFCMD_LANG=CURR_LANG"

Figure 10. An initial procedure in a bilingual application

proceed_text = ’Continue...’
"RUN WEEKLY_Q" /* Use the English RUN command */
"SET GLOBAL (DSQEC_NLFCMD_LANG=0" /* switch back to French */
"MESSAGE (TEXT=’"proceed_text"’" /* message in French */
"INTERACT" /* show the report with message */

Writing Bilingual Applications

Chapter 7. Writing Bilingual Applications 47

v GET GLOBAL
v INTERACT
v MESSAGE
v SET GLOBAL
v START

Multilingual environments

When one or more NLFs are installed in your QMF installation, a multilingual
environment is created. In such an environment, you can, with the proper
authorization, have your choice of one presiding language for each QMF
session. For example, you can choose English for one session and German for
another, provided the German NLF is installed. Although you can’t switch
languages during a QMF session, you can switch the command language
variable. Then you must end the current session and begin another to obtain
the appropriate language environment.

QMF session environments

When no NLFs are installed, the only available QMF session environment is
the English-language environment. When an NLF is installed, the NLF
environment differs in some ways from the English-language environment.

Environmental similarities
In many aspects the QMF session environment is the same no matter which
NLF is in operation. The most important similarities are:

Capabilities

In general, you can do anything in an NLF session that you can do in an
English-language session. You can create and save all the temporary storage
objects, format and print reports, and issue SQL commands. You can also run
Prompted Query, SQL and QBE queries, and QMF procedures. The difference
between the English and NLF environments lies not in what you can do, but
in what you must enter at your terminal to get it done and what languages
you see on your terminal screen.

SQL and QBE

The verbs, operators, and keywords of the SQL and QBE languages are not
translated.

Usage codes for forms

These are identical; they are not translated.

Writing Bilingual Applications

48 QMF: Developing QMF Applications

System commands

CMS, TSO, or CICS and ISPF commands can still be issued from QMF
through QMF’s CMS, TSO, or CICS command. This command is unaffected by
translation: you enter CMS, TSO, or CICS followed by the command to be run,
and write the command exactly as you would if you were running it outside
of QMF.

Environmental differences
Some of the more important differences between the NLF environment and
the English-language environment are:

The QMF language

Every NLF has a complete set of verbs and keywords for the QMF language.
These verbs and keywords must appear in your QMF commands when you
are operating in the NLF’s language environment. For a given NLF, these
words might be translated.

For example, suppose that in the German NLF, the verb DISPLAY and the
keyword PROC were translated into ANZEIGEN and PROZEDUR,
respectively. During a German-language session, QMF understands the
command ANZEIGEN PROZEDUR, but does not understand DISPLAY PROC.

Some elements of the QMF language are command synonyms and can be
translated. As a result, each NLF has its own uniquely named command
synonym table. When the NLF is installed, its command synonym table is
created, and the profile for the NLF indicates the command synonym table
name for that NLF.

QMF panels and messages

Every NLF has a complete set of QMF messages and panels. Like the verbs
and keywords for QMF commands, these might not be translated, but in most
cases they are translated. Within the panels and messages, the fixed portions
of text can be translated. Variable information, such as a query name, is not
translated.

Allowable panel input

Many QMF panels, such as prompt panels and form panels requiring user
input, restrict the range of some entries to a small set of keywords. Most of
the allowable values are translated. YES and NO responses in English, for
example, are JA and NEIN in German.

Profile parameter values

Writing Bilingual Applications

Chapter 7. Writing Bilingual Applications 49

In a multilingual environment, users have a separate profile for each NLF
they can use for a QMF session. For each of these profiles, the parameters are
the same and have the same meanings. But, as part of QMF’s supply of
keywords, their names can be translated. For certain parameters, the values
they can assume are translated also.

For example, in an English profile, the CASE parameter can have the value
UPPER, STRING, or MIXED. In a German profile, the CASE parameter is the
SCHRIFT parameter, and the values it might assume are GROSS, KETTE, and
GEMISCHT.

Exported and saved form objects

The SAVE, EXPORT, and IMPORT commands let you specify the language in
which you want form objects saved. You can save them in English, or in the
presiding language of your current session. For more information on these
commands, see QMF Reference.

Sample tables and queries

IBM might supply translated versions of the English sample tables and
queries with some of its NLFs. For example, Japanese users have sample
tables translated from the English tables.

Creating translatable applications

You can save time in adapting an application to new languages by using
variables for as many language-sensitive objects as you can. These variables
can include:
v The verbs, object names, and option identifiers in a QMF command
v Installation-defined panel names

If you are creating your own panels for your application, you need a set of
translated panels for each language under which the application is to run.
Give these panels unique names and make them available to the application
users. The application can then use variables for the panel names.

v Installation-defined message identifiers
Like panels, the messages should be translated into the appropriate NLF
languages. The application can use variables for the message names.

Using variables lets you use the same program in several NLFs.

Writing Bilingual Applications

50 QMF: Developing QMF Applications

Chapter 8. QMF Commands in Applications

Any command that is valid on the QMF command line in a particular
environment is valid in an application. In addition, QMF provides commands
that are specially designed for applications.

This chapter describes QMF commands that users commonly include in their
programs and describes their use in application development. For more
information on commands and their syntax, see QMF Reference.

CONNECT

You can use the QMF CONNECT command to connect to a different system
within your distributed network, with remote unit of work, during a QMF
session. You can also use the QMF CONNECT command to access remote
databases supported by QMF. When you connect to the remote system, this
system becomes the current location.When you write applications, you can
issue this command from:
v The callable interface
v The command interface
v Within a procedure (linear or with logic)

Certain aspects of your applications can be affected when you use the QMF
CONNECT command to start remote unit of work. Be aware of the following
considerations:
v When your application connects to a new location, the QMF profile,

command synonyms, and function keys are reinitialized to the values at the
new (current) location.

v All callable interface and command interface programs that start QMF and
issue QMF commands must reside on the same system as the user (the local
system). After the program starts QMF at the local system, the program can
issue a QMF CONNECT command to connect to a remote database. Any
subsequent QMF commands or SQL statements that affect database objects
are run at the current location (the remote database).

v All programs started by QMF must follow the conventions of the operating
system on which QMF is running (the local system).

v Different types of commands behave differently with remote unit of work.
When your applications use remote unit of work, be aware that all
system-specific and most QMF commands run at the system where QMF is
running (usually, your local system). However, when a QMF command
does either of the following:

© Copyright IBM Corp. 1983, 2002 51

– Sends SQL commands to the database
– Uses or alters QMF objects and data stored in the database

These commands affect the database at the current location.
v

An example
You are logged on to your local VM system (SANJOSE) running CMS. You
want to write a REXX callable interface program that does the following:
1. Starts a QMF session

CALL DSQCIX "START"

2. Connects to the remote DB2 database (DALLAS)
CALL DSQCIX "CONNECT TO DALLAS"

3. Runs a procedure with logic(EARNINGS) that queries the remote database
for data, formats the data, and prints the report
CALL DSQCIX "RUN PROC EARNINGS"

The procedure EARNINGS contains the following logic:
...
"RUN QUERY EARNQ (FORM=EARNF"
"PRINT REPORT"...

This procedure does not contain another CONNECT command.
4. Ends the QMF session

CALL DSQCIX "EXIT"

When you write this program, be aware of the following:
v Your application program must reside on your local (SANJOSE) VM

system.
v The QMF session starts on your local (SANJOSE) VM system.
v Your procedure must reside on the remote database (DALLAS); DALLAS is

the current location when the application runs the procedure in step 3.
v Any QMF objects (in this case, the query and the form) used in the

application or the procedure after the CONNECT command in step 2 must
reside on the remote database (DALLAS).

v The SQL query EARNQ run by the procedure in step 3 runs against the
DB2 database in DALLAS.

v The PRINT command in the procedure EARNINGS prints the report on the
printer named by the profile at the current location (DALLAS). For this
example, assume that the profile at the current location (DALLAS) defines
the printer to be at the local VM system (SANJOSE).

QMF Commands in Applications

52 QMF: Developing QMF Applications

For more information about connecting to a remote location with the QMF
CONNECT command, see online help.

END

You can include the END command in your application to end the QMF
session. You can also design your application so that your end user needs to
press the End function key or type the END command at the command line to
end the interactive QMF session and return control to the application.

The rules governing the END command depend on the type of session in
which the END command is issued. This section discusses how the END
command operates in each of the following types of QMF sessions:
v Session started by the callable interface
v Interactive session using ISPF with an initial procedure
v Interactive session using ISPF without an initial procedure
v Interactive session begun by an INTERACT command
v Batch mode session

Session started by the Callable Interface
When issued by the end user in an interactive session started by the callable
interface, the END command terminates the interactive session and returns
control to the calling application. Before QMF terminates the active session,
QMF makes the Home panel the current panel. QMF remains active. Only the
EXIT command or a severe error terminates QMF after it is started by a
callable interfaceapplication.

Interactive session with an Initial Procedure (DSQSRUN)
QMF starts an interactive session that runs an initial procedure when QMF is
started using these keywords:
DSQSRUN=xxxxx,DSQSMODE=I

where xxxxx (the value of the DSQSRUN keyword) is the name of a QMF
initial procedure. This keyword is explained in “START command keyword”
on page 67.

After QMF starts, QMF runs the initial procedure. After this procedure ends,
the user is in an interactive session, unless the current panel is the Home
panel. If the current panel is the Home panel, QMF does not start an
interactive session. Instead, QMF immediately restarts the initial procedure if
both of the following statements are true:
v No serious errors have occurred
v The DSQEC_RERUN_IPROC global variable is set to 1

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 53

You should avoid writing your initial procedure so that the current panel at
the end of the procedure is the Home panel. If the Home panel is the current
panel at the end of the initial procedure, an uninterruptible loop occurs; QMF
can appear as though it is not starting or running the initial procedure. To
avoid this, make sure that either of the following occurs:
v The current panel at the end of the procedure is not the Home panel.
v The procedure contains either a QMF EXIT or INTERACT command.

When the end user issues an END command in the interactive session and
DSQEC_RERUN_IPROC= 1, QMF simply restarts the initial procedure. Use
the EXIT command to terminate the session.

When QMF is not started through the callable interface, you can use
DSQ_RERUN_IPROC to control whether QMF reruns the initial procedure. If
you set DSQEC_RERUN_IPROC = 0, then QMF terminates instead of
rerunning the initial procedure when the END command runs. This variable
has no effect on callable interface applications.

Interactive session without an Initial procedure
In this situation, the DSQSRUN parameter is not specified when QMF is
started. This ensures that no procedure runs before the user receives control.

When the end user issues the END command from within this interactive
session, QMF does one of the following:
v Makes the Home panel the current panel if the current panel is any other

panel.
v Marks the session for termination if the current panel is the Home panel. If

issued online, the END command terminates the session immediately. If
issued in an application, the session ends whenever the application ends.

Interactive session begun by an INTERACT command
An application can begin a new interactive QMF session within the current
interactive QMF session by using the INTERACT command described in
“INTERACT” on page 57. The old session can be a primary session, with or
without an initial procedure, or it can be a session begun by another
application.

In the new session, the user can enter an END command online, or an
application can issue one. Either way, running the END command marks the
interactive session for termination, no matter what the current panel is.

If issued online, the END command terminates the session immediately. If
issued in an application, the session ends whenever the application ends.
When that session ends, control returns to the application that started it.

QMF Commands in Applications

54 QMF: Developing QMF Applications

Batch mode session
A QMF batch mode session runs in a noninteractive session on all
environments supported in QMF. You can start QMF and prevent screen
display by specifying batch mode (DSQSMODE=BATCH), which is the
default. You must specify an initial procedure using DSQSRUN when using
DSQQMFE; however, when using the callable interface, you do not have to
specify an initial procedure.

During the batch QMF session, the initial procedure can issue an END
command, or it can start an application that issues an END command. The
results are like those for an interactive session without an initial procedure.
The END command:
v Makes the Home panel the current panel if any other panel is the current

panel.
v Marks the session for termination if the current panel is the Home panel.

If issued by the initial procedure, the END command terminates the session
immediately. If issued in an application, the session ends whenever the
application issues the QMF EXIT command.

During the session no interaction is allowed. Therefore, the session cannot
begin a new session.

EXIT

The EXIT command works the same regardless of how the QMF session was
started: it marks all the user’s sessions for termination. In batch mode, there is
just one session. For an interactive session, this includes the primary session
and every session begun by the INTERACT command.

When the EXIT command is entered on the command line, the session in
which it is entered is terminated immediately. Each session begun by the
INTERACT command terminates as the application that started it completes.
When the EXIT command is issued in an application, the session ends when
the original QMF session ends. All interactive sessions begun by the
INTERACT command must end before QMF terminates.

In a callable interface program, it is important to include the QMF EXIT
statement when the application is done using QMF. If you forget to include
this command, your QMF session remains active until you log off or until
your batch job completes.

When the user or an application issues the EXIT command, QMF sets
DSQAO_TERMINATE to 1 (marked for termination). Only an application
running within QMF can test and use this global variable. If

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 55

DSQAO_TERMINATE is set to 1 when QMF returns to the main QMF session,
QMF immediately terminates and releases resources.

GET GLOBAL

You can use the GET GLOBAL command to access QMF global variables in
your application. For languages other than REXX, QMF provides an extended
syntax of the GET GLOBAL command.

MM GET Global (Variable definitions MN

Variable definitions:

number of varnames , varname lengths , varnames ,

value lengths , values , value type

The parameters specified on the GET GLOBAL command define the storage
that your application program uses to store the variable names and values
returned by the GET GLOBAL command.

number of varnames
The number of variables requested.

varname lengths
A list of lengths for each variable name specified.

The length of the variable name should be equal to the actual length of
the global variable name in your storage area. An 18-character area
padded with trailing blanks is allowed.

varnames
A list of names of the QMF variables.

Because QMF deletes trailing blanks, you should not specify trailing
blanks in global variable names.

value lengths
A list of the lengths of the values of the variables.

The following rules apply to the variable value:
v If the value length you supply is less than that of the value stored in

QMF, QMF truncates on the right and returns a truncated value.
v If the value length you supply is greater than that of the value stored in

QMF, QMF returns a value padded with trailing blanks.

QMF Commands in Applications

56 QMF: Developing QMF Applications

v Integer lengths should always be 4 bytes.

values
A list of variable values.

value type
The data type of the storage area that contains the values. It must be
either character or integer.

INTERACT

The INTERACT command places end users into interactive QMF or GDDM
ICU sessions. While in these sessions, the end users can enter commands as
though they are in normal interactive sessions of these products.

INTERACT has two forms: session and command.

The session form of INTERACT
When you issue the INTERACT command, QMF places the user on the
current panel and allows the user to issue QMF commands interactively. The
INTERACT command provides another QMF “session” within your current
session. The INTERACT command can place the user in either an interactive
QMF session or an interactive GDDM ICU session.
v For an interactive QMF session:

Issue the INTERACT command following a QMF command that would
normally display a QMF panel. In this session, the user can enter any
commands that are valid for interactive QMF.

v For an interactive GDDM ICU session:
Issue the INTERACT command following a command that normally makes
QMF start GDDM ICU and display the ICU panel. In this session, the user
can enter any commands that are valid for the ICU.

A scenario
If you run a procedure that requires only one step to produce your report, like
the following:

QMF displays the REPORT panel containing your formatted data with a
message that says, "OK, your procedure was run."

However, you might decide to write a procedure involving several steps. If
you want to see the intermediate results of a procedure, you must use the

/* This procedure prints the weekly sales report. */
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"
"PRINT REPORT"

Figure 11. A simple procedure, without the INTERACT command

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 57

INTERACT command. To see the intermediate result of a procedure that runs
more than one query, insert an INTERACT command immediately following
the first RUN command:

Then, when you run this procedure from the home panel, QMF displays the
REPORT panel containing your formatted data. Next, you enter the END
command from the REPORT panel, and the procedure continues, running the
second query and displaying the final report. If you omit the INTERACT
command, QMF displays only the final report without showing the result of
the first query.

The INTERACT command produces the same effect when it is issued through
the callable interface, although in REXX the same commands look like this:

The Call dsqcix "INTERACT" line is the REXX syntax for issuing the
INTERACT command through the callable interface. You need to use the
syntax required by your programming language to issue the INTERACT
command through the callable interface.

Suppressing the display of reports
If you run a query in a QMF callable interface application, QMF by default
displays the resulting report. However, you can tell QMF not to automatically
display the resulting report by setting the DSQDC_DISPLAY_RPT global
variable to zero (0). You can also set this global variable on the START
command by specifying DSQADPAN=0.

This global variable is valid only when the RUN QUERY command is issued
from an application. It does not affect the display of reports when RUN
QUERY is issued from the QMF command line.

/* This procedure generates a report showing annual sales. */
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"
"INTERACT"
"RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F"

Figure 12. Using INTERACT in a procedure

...
call dsqcix "RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"
call dsqcix "INTERACT"
call dsqcix "RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F"...

Figure 13. Using INTERACT in a REXX application

QMF Commands in Applications

58 QMF: Developing QMF Applications

Ending an INTERACT session
When the user issues the END command, control returns to the process that
issued the INTERACT command; however, the two sessions are not
independent. Anything done during the INTERACT session remains in effect
when the old session resumes. For example, if the user modifies the current
form object in the new interactive session, the current form object in the old
session contains these modifications when the new session ends.

If you want your application to display the QMF Home panel after the user
issues an END command from a QMF object panel (the way interactive QMF
does), add the logic from “A REXX example of using an INTERACT
l’QMF720oop” on page 224.

The command form of INTERACT
The command interface (DSQCCI) runs QMF commands interactively only
when the command interface application uses the command form of
INTERACT and QMF is running an interactive session (DSQSMODE=I).

The command form of INTERACT has no effect on a command issued
through the callable interface. In the callable interface, the only way to control
whether commands are run interactively is to set the START command
keyword DSQSMODE. For more information about the DSQSMODE keyword,
see Table 7 on page 68.

Use the following syntax to request interactive execution of a designated
command. Issue the command:
INTERACT command

where command is the designated command. QMF runs this command
interactively when any dialog between QMF and the user about the
command’s execution actually takes place. Various QMF prompt and status
panels can appear in this dialog.

For example, the following command displays the command prompt panel for
RUN QUERY command options:
INTERACT RUN QUERY ABC ?

If interactive execution is not allowed, as in a QMF batch session, the
command form of INTERACT has no effect on the command it is preceding.

You can check to see if interactive execution is allowed in the current session
by examining a variable named DSQAO_INTERACT; a value of 1 means that
INTERACT is allowed. A batch application, for example, does not allow
interactive execution. See 259 in Appendix E, “QMF Global Variable Tables”
for details on DSQAO_INTERACT.

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 59

MESSAGE

When you are writing applications, you often want to give specific messages
to your users about the information displayed for them or the function they
should perform next. You can write your own messages and display them on
QMF panels through the MESSAGE command. In ISPF, you can also specify
that QMF display the message help for an ISPF error message.

The MESSAGE command syntax:

MM Message
number (

Help=helppanel
Stopproc=Yes|NO
Text=value

MN

number (with ISPF only)
number is only valid under ISPF. This parameter is the identification
number of a message definition in an ISPF message library.

HELP
Use this parameter to specify a help panel other than the one defined
with the message normally displayed in this situation. Replace helppanel
with the appropriate panel ID.

If you want to display a QMF panel, the panel’s definition is in
DSQPNLE, so you cannot modify the panel.

In ISPF, if you want to create and display your own panel, the panel’s
definition must be in an ISPF panel library, and this library must be
concatenated to your ISPPLIB file or data set. The panel must be a help
panel, not a menu or a data-entry panel.

In ISPF, if you have specified number, helppanel defaults to the help-panel
indicator for the message definition specified by number.

In ISPF, if the message definition specified by number does not define a
help-panel indicator, then the MESSAGE command does not provide
message help. Instead, the QMF help for the object panel appears on the
user’s screen when the user requests help.

STOPPROC
Use Stopproc to suppress the execution of linear procedures by setting the
proceduretermination switch. The following command sets the procedure
termination switch:
Message (Stopproc=Yes

When Stopproc=Yes, the procedure termination switch is on. The default
value is No (off). This switch only affects linear procedures.

QMF Commands in Applications

60 QMF: Developing QMF Applications

|

While this switch is on, any QMF procedure receiving control ends its
execution immediately. While the switch is off, procedures run normally.

When the switch is off, only a MESSAGE command can turn it on. When
the switch is on, it stays on until one of the following happens:
v Another QMF command is issued. This can be any QMF command,

except a MESSAGE command with the option to turn the switch on.
v Control returns to the user when the application ends. A user can

always issue online commands that run QMF procedures.

You can check to see whether the proceduretermination switch is on by
examining the variable DSQCM_MESSAGE. If the termination option is in
effect, this variable contains the message for the MESSAGE command that
turned on the termination switch.

TEXT option
Use TEXT= to define a message or to override the text in an ISPF message
definition. Replace value with the character string to be used for the
message. A value that contains blank characters must be surrounded with
delimiters. Valid delimiters for a message value are single quotes,
parentheses, and double quotes. When the delimeters are double quotes,
the double quotes are displayed as part of the message. The maximum
length for message value is 78 single-byte characters. A value longer than
78 characters is truncated to contain only the first 78 characters. QMF
does not fold the text into uppercase; however, ISPF might fold the text
into uppercase if MESSAGE is issued through DSQCCI (the command
interface).

If your message contains quotes, you need to double the quotes in the
TEXT= specification.

In ISPF, the default is the long message text of the ISPF message specified
by number, which becomes the generated message. The text is left as it is;
no folding takes place whatever the value of the CASE setting for the
user’s QMF profile.

Examples of using the MESSAGE command to generate messages
Suppose that you want to write an application, using a procedure, that runs
two queries and displays two reports. When QMF displays the first report,
you want to display a message that tells users to end the interactive session
when they are ready to continue to the second report. You can write a linear
procedure like that in Figure 14 on page 62, which includes a message defined
by the MESSAGE command on the REPORT panel. To have your message
appear on the REPORT panel, place the MESSAGE command immediately
before the INTERACT command:

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 61

If you use a procedure with logic, you can use a REXX variable in place of the
text string, as in Figure 15. When you use REXX variables, you must use
double quotes around the variable name in the messagetext text string.

Examples of MESSAGE Commands with ISPF Available

v MESSAGE MSG011X

– The message text is the long message in MSG011X.
– The message help panel is the panel identified (if any) in MSG011X.
– Whether the procedure termination switch is set after QMF processes the

command is determined by the procedure termination switch in
MSG011X.

v MESSAGE MSG011X (HELP=PANELX STOPPROC=YES

– The message text is the long message in MSG011X.
– The message help panel is a panel named PANELX.
– The procedure termination option switch is turned on, which suppresses

the execution of QMF linear procedures in the application.

SET GLOBAL

You can create your own global variables with the SET GLOBAL command
and use them in QMF commands as substitution variables. You can use your
own global variables, or you can use the ones QMF provides. For a list of the
QMF-provided global variables, see Appendix E, “QMF Global Variable
Tables” on page 257.

To set a global variable for a procedure, do one of the following:
v Set the variable on the SHOW GLOBALS panel.

...
RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F
MESSAGE (TEXT=’OK, press END when you are finished viewing this report.’
INTERACT
RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F

...

Figure 14. Example of using the MESSAGE command

oktext = ’OK, press END when you are finished viewing this report.’
"RUN QUERY WEEKLY_SALES_Q (FORM=WEEKLY_SALES_F"
"MESSAGE (TEXT=’"oktext"’"
"INTERACT"
"RUN QUERY YEAR_TOTAL_Q (FORM=YEAR_TOTAL_F"

Figure 15. Using REXX variables with the MESSAGE command in a procedure

QMF Commands in Applications

62 QMF: Developing QMF Applications

The variable name can be up to 18 characters long, and the length of the
value can be up to 32 768 characters.

v Use the linear syntax of the SET GLOBAL command in your procedure, on
the command line, or on the SET GLOBAL prompt panel.

v Use extended syntax for the callable interface languages other than REXX.
For information about using the extended syntax of the SET GLOBAL
command in the callable interface, see SET GLOBAL: Extended syntax.

SET GLOBAL: linear syntax
The name of the global variable can be up to 17 characters long, and the
length of the value must be 55 characters or less. The linear syntax for the SET
GLOBAL command is as follows:

MM P

,
(1) =

SET GLOBAL (variablename
(2)

value
(3))

&variable

MN

Notes:

1 Identifies the global variable to which a value is assigned.

2 The character string that makes up the content of the global variable. A
value that contains blank characters must be surrounded with
delimiters. Valid delimiters for a global value are single quotes,
parentheses, and double quotes. When the delimters are double quotes,
the double quotes are included as part of the global variable.

3 A global variable name which contains the content of the global
variable.

varname=value
Assigns a value to a variable name.

For example, to set a global variable called DEPT, issue the following
command:
v In your linear procedure:

SET GLOBAL (DEPT=38

v In your procedure with logic:
"SET GLOBAL (DEPT=38"

For more information about the SET GLOBAL command, see QMF Reference .

When you define a global variable, it remains defined until you reset the
variable or end your QMF session. For information about using the RESET
GLOBAL command, see QMF Reference.

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 63

SET GLOBAL: Extended syntax
To change the value of any of these variables in an application written in a
language other than REXX, (assembler, C, COBOL, FORTRAN, or PL/I), you
must use the SET GLOBAL command with extended syntax. For examples of
this command, see the sample program for the appropriate language in
Appendix A, “Sample Code for Callable Interface Languages” on page 127.

The maximum length of a variable name used with a SET GLOBAL extended
syntax command is 17 characters. The maximum length of a variable value is
32 768 characters.

MM SET GLOBAL (Variable definitions MN

Variable definitions:

number of varnames , varname lengths , varnames ,

value lengths , values , value type

number of varnames
The number of variables requested.

varname lengths
A list of lengths for each variable name specified.

The length of the variable name should be equal to the actual length of
the global name in your storage area. An 18-character area padded with
trailing blanks is allowed.

varnames
A list of names of the QMF variables.

value lengths
A list of lengths of the values of the variables.

The following rules apply to the variable value:
v If the value length you supply is less than the length of the value

stored in your storage area, the value is truncated on the right when it
is stored in QMF.

v If the value length you supply is greater than the length of the value
stored in your storage area, the value might appear to have
unrecognizable characters in it when it is stored in QMF.

v Integer lengths should always be 4 bytes.

QMF Commands in Applications

64 QMF: Developing QMF Applications

QMF uses whatever value is in storage, starting at the address you assign
for the length you assign. If the length is too long, QMF might abend.

values
A list of variable values.

value type
The data type of the storage area that contains the values. It must be
either character or integer.

If you are using SET GLOBAL in the REXX callable interface, you can use
only the linear syntax for the SET GLOBAL command, shown in “SET
GLOBAL” on page 62. With this linear syntax, the maximum length for the
global variable name is 17 characters, and the maximum length for the
variable value is 55 characters.

Rules for using global variables
v On the SET GLOBAL command, variable names are not preceded with an

ampersand as they are on the RUN and CONVERT commands.
v The QMF form does not recognize global variables set to form variable

names or aggregation variable names.
v The QMF form does not recognize global variables with question marks in

the names.

Rules for defining global variable names
v Global variable names are limited to 17 characters when entered on the

command line and 18 characters when entered through the callable
interface. You should use 17-character names, however, because of
limitations of the SET GLOBAL command.

v A global variable name can contain a numeric character, but the first
character of a global variable name cannot be numeric.

v Global variables cannot begin with DSQ because QMF reserves these letters
for QMF predefined global variables.

v The first character of a global variable name must be an alphabetic
character (A through Z) or one of these special characters:

¢ ! $ ~ { } ? @ # % \
v A global variable name cannot contain blanks or any of the following

characters:

* () − + ¬ | : ; " ' < > / . , = &
v Trailing blanks are not recognized in global variable names.

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 65

START

When you start QMF through the callable interface, you need to use the
START command. Only one QMF session can be active at one time. If you
want your application to test whether QMF has already been started, see
“Starting QMF from an application” on page 24.

This section contains information on the START command syntax and
keywords, including a table of keyword descriptions.

MM START (Keyword definitions MN

Keyword definitions:

number of keywords , keyword lengths , keywords ,

value lengths , values , value type

Assembler, C, COBOL, FORTRAN, and PL/I use the following specifications
for the START command:

number of keywords
The number of start command keywords you are using in your START
command.

keyword lengths
The length of each start command keyword specified.

keywords
Names of the start command keywords.

There are three SAA start command keywords (DSQSCMD, DSQSMODE,
and DSQSRUN). QMF provides other start command keywords in
addition to these three. For more information on the start command
keywords, see “START command keyword” on page 67.

value lengths
A list that contains the lengths of the values for each start command
keyword.

values
A list of values for the start command keywords specified in this
command.

QMF Commands in Applications

66 QMF: Developing QMF Applications

value type
The data type of the storage area that contains the value. The value type
must be character for the START command.

START command syntax for the REXX Callable Interface
For the REXX callable interface, the START command has the following
syntax:

MM P

,

START
(keyword = value

MN

START command keyword
Specify any of the following keywords on the START command:

DSQADPAN
DSQSIROW

DSQALANG
DSQSMODE 2

DSQSBSTG
DSQSPILL

DSQSCMD 2 (CMS and TSO only)
DSQSPLAN (TSO only)

DSQSDBCS
DSQSPRID (TSO only)

DSQSDBNM
DSQSRSTG (CMS and TSO only)

DSQSDBQN (CICS only)
DSQSRUN 2

DSQSDBQT (CICS only)
DSQSSPQN (CICS only)

DSQSDBUG
DSQSSUBS (TSO only)

DSQSDCSS (CMS only)
DSQSUSER (CICS/VSE only)

These keywords are described in Table 7 on page 68.

2. This keyword is an SAA command keyword.

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 67

QMF allows you to specify START command keywords with the following
conve
v You can specify any start command keyword on the START command. In

all environments supported in QMF, except CICS, you can also specify any
keyword in the REXX program named by the DSQSCMD parameter except
DSQSCMD. Because QMF CICS does not support REXX, you must specify
all keywords on the START command.

v If you do not specify any keywords, QMF uses the values of the START
command keywords as they appear in the program specified by the
DSQSCMD keyword. If you do not use this program, QMF uses the default
values of each keyword.

v If your application or the initial procedure specifies keywords that are not
supported in a particular environment, those keywords are ignored. This
way, you can compile a single program to run in multiple QMF
environments without changing the environment-specific keywords.

For detailed information about these keywords and how they are affected by
environmental dependencies, see Installing and Managing QMF for your
platform. In Table 7, a superscript SAA (2) by the keyword name denotes an
SAA start command keyword.

Table 7. START command keywords, descriptions, and default values

START
command
keywords

Description Default value

DSQADPAN Sets the DSQDC_DISPLAY_RPT global variable. This
variable controls whether QMF displays the report when a
query is run from within an application program. A value of
1 displays the report when a query is run. Set the value to 0
to specify that the report not be displayed.

In the callable
interface: 1

In batch mode, or if
QMF started
interactively with
DSQQMFE: 0

QMF Commands in Applications

68 QMF: Developing QMF Applications

Table 7. START command keywords, descriptions, and default values (continued)

START
command
keywords

Description Default value

DSQALANG Determines the presiding language for the session you are
starting. The value for this parameter is a one-character
language identifier. Enter or specify QMF commands in the
presiding language specified by this keyword. If you want to
enter English commands when the presiding language is a
language other than English, you can use the QMF bilingual
support (see Chapter 7, “Writing Bilingual Applications” on
page 45). The following table shows a complete list of
language identifiers that are valid values for this variable:

Identifier
Language

D German

E English

F French

H Hangeul (Korea)

I Italian

K Kanji (Japan)

P Brazilian Portuguese

Q Danish (not available in QMF VSE)

R Simplified Chinese (China)

S Spanish

U Uppercase English

V Swedish (not available in QMF VSE)

Y Swiss French

Z Swiss German

E, for English

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 69

Table 7. START command keywords, descriptions, and default values (continued)

START
command
keywords

Description Default value

DSQSBSTG Tells QMF how many bytes of storage to use for report
generation. It lets you limit the amount of storage when
there are multiple users in the same address space in CICS,
and has similar uses in TSO and CMS if this variable is
specified.

In TSO and CMS, this keyword overrides the DSQSRSTG
keyword if you specify both. If you do not specify this
keyword, the value of the DSQSRSTG keyword is used.

Note to CICS users: DSQSBSTG is always used for CICS;
DSQSRSTG is never used for CICS.

If you set the value of DSQSBSTG to below the minimum
amount of storage required to produce a report, QMF
automatically allocates the minimum amount of storage
required; this minimum depends on your environment. A
large report can require more than the minimum amount of
storage.

In CICS: 500 000 bytes

In CMS or TSO: zero
bytes

DSQSCMD 2

(CMS and TSO
only)

Specifies the REXX program that sets the QMF program
parameters.

When QMF receives the START command from a callable
interface application, QMF calls the REXX program specified
by this keyword. This REXX program provides values for
QMF program parameters that QMF uses as defaults for
those keywords not specified on the START command.

START (DSQSCMD=yourprogram

Note to CICS users: QMF CICS does not support REXX;
therefore, DSQSCMD is not supported under CICS. If you
start QMF using the callable interfaceunder CICS and you
want to set QMF program parameters, you must specify the
keywords on the START command.

DSQSCMDE

DSQSDBCS Determines whether QMF allows double-byte characters
when the terminal does not support DBCS. Values are YES
and NO.

You should set the value to YES when you intend to print
double-byte character set (DBCS) data from a non-DBCS
terminal or run a QMF batch job that prints DBCS data.
Otherwise, the value should be NO.

NO

QMF Commands in Applications

70 QMF: Developing QMF Applications

Table 7. START command keywords, descriptions, and default values (continued)

START
command
keywords

Description Default value

DSQSMODE 2 Tells QMF which mode you want to work in.

I Specifies interactive mode.

B Specifies batch mode.

When the value of DSQSMODE is B, panel display is
inhibited so that QMF can run in a background job.

B (batch)

DSQSPILL Specifies whether QMF uses the spill file or data set.
Possible values are YES or NO.

For CICS: NO

For CMS and TSO:
YES

DSQSPLAN
(TSO only)

Specifies the DB2 application plan ID assigned to QMF. QMF720

DSQSPRID (TSO
only)

Specifies whether to use the TSO logon ID or the primary
authorization ID to select the appropriate row from
Q.PROFILES and to qualify Q.ERROR_LOG entries.
Allowable values are PRIMEID or TSOID.

PRIMEID

DSQSRSTG
(CMS and TSO
only)

Determines the number of bytes of virtual storage you want
to reserve for your application and other applications called
by your application. Use this parameter if you plan to run
applications from within the QMF environment. If you do
not reserve storage for your application, QMF can use all the
virtual storage available to produce a large report.

Zero (0)

DSQSRUN 2 Specifies the name of the QMF initial procedure to run after
QMF is started. The initial procedure runs only once with
the callable interface.

In this procedure, you can include commands to set global
variables and profile variables to customize the user’s
session. This procedure can place the user in QMF if the
application is going to run QMF interactively, or prepare the
QMF session for a batch operation.

NULL

DSQSSPQN
(CICS only)

Specifies the name of the CICS temporary storage queue that
is used for QMF spill data. When the program parameter
DSQSPILL has a value of YES, this spill area is used to
contain report data.

DSQSid, where id is the
CICS terminal ID

DSQSSUBS (TSO
only)

Specifies the ID of the DB2 subsystem on which QMF is
installed.

DSN

QMF Commands in Applications

72 QMF: Developing QMF Applications

Table 7. START command keywords, descriptions, and default values (continued)

START
command
keywords

Description Default value

DSQSUSER
(CICS/VSE only)

Specifies the SQL/DS authorization ID and password on the
CONNECT command. To specify the DSQSUSER keyword,
enter the following:

DSQSUSER=SQL ID/password

where SQL ID is the SQL/DS¬ authorization ID for the user
who is starting QMF.

The 3-byte VSE
operator ID and the
password defined in
the system catalog.
Must specify if
starting QMF with
DSQSMODE=B.

Using command synonyms

QMF lets you create command synonyms, which are commands that resemble
QMF commands. Command synonyms give you a lot of flexibility, and they
are extremely useful for end users. For example, command synonyms perform
the function of a command or start an application. To enable QMF users to
access your command synonyms, you must enter your command synonyms
into one or more command synonym tables. When a user issues a command
synonym, QMF runs a TSO, RUN, CICS, or CMS command that starts the
user’s application.

Creating a command synonym
To create a command synonym:
1. Create a descriptive command.

QMF commands follow the verb object format. Every command is a verb
(action word) and many commands also have an object (descriptive noun)
following them. For example, END is a verb-only command, while
CONVERT QUERY is a verb-object command.
You can create command synonymswith verbs that are identical to existing
QMF commands. If you do, you can still use the original QMF command
by preceding it with the command QMF. See QMF Reference for information
on the command QMF.
For example, suppose your procedure runs a report to see if the weekly
sales figures have been entered. If the data for the current week is missing,
the procedure calls the Table Editor to add the latest information to the
table. Regardless of what you named the procedure, you want the
command synonym to be descriptive for the user. You could choose a
verb-object pair like UPDATE SALES.
If your command synonym needs parameters or options, you can use the
substitution variable &ALL.

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 73

2. Update the appropriate command synonym table with your new
command synonym.
You need to know the name of the command synonym table you want to
use. The variable DSQAP_SYNONYM_TBL contains the name of the
command synonym table for each user.
Your database administrator has access to the command synonymtables. If
you want to create a command synonym for your personal use, you might
want to have a view defined that lets you add command synonyms.
A command synonym table would contain the following information for
the command synonym UPDATE SALES:

ADD Q.COMMAND_SYNONYMS

1 to 4 of 4
VERB. (UPDATE)
OBJECT. (SALES)
SYNONYM_DEFINITION. . (RUN PROC WEEKLY_SALES >
REMARKS (procedure that checks to see if the weekly sales fi>

After you press the ADD function key, QMF adds this command synonym
to your table. Before you can use the command, however, you must
reconnect to QMF.

3. Update your profile, if necessary.
If you added this command synonym to a new table or view, add the
name of the new table or view to your profile.

4. End your QMF session.
QMF does not recognize the changes you made to your command
synonym and profile tables until you start a new QMF session.

SAA RUN QUERY report minisession
When you write applications that produce QMF reports, you can limit users’
access to QMF by using report minisessions. In a report minisession, QMF
limits the commands that a user can issue while viewing a report. Valid and
invalid commands for a report minisession are listed in Table 8 on page 75 and
Table 9 on page 76.

A report minisession behaves as a nested session (a session within a session).
In minisessions, your initial QMF session remains intact, but becomes
temporarily unavailable while you are viewing a report. The minisession
becomes your current, active session until you issue the END command (or
press the End function key). When you end a minisession, you either return to
the initial QMF session or to the calling application, depending on how you
write the application. The application cannot continue to issue subsequent
commands until the report minisession is ended.

QMF Commands in Applications

74 QMF: Developing QMF Applications

The QMF global variable DSQDC_DISPLAY_RPT, in effect, determines
whether QMF starts a report minisession. This is because
DSQDC_DISPLAY_RPT determines whether QMF displays a report after
running a query (set to 1 to display the report, 0 to suppress display).

When you start QMF using the callable interface:
v The default value for global variable DSQDC_DISPLAY_RPT is 1. (When

QMF is started with DSQQMFE, whether interactively or in Batch mode,
the default value of the global variable is 0).

v If you run a procedure or an application that runs a query, QMF starts a
report minisession; it is in this minisession that QMF displays the report
resulting from the query.

v If your procedure or application does not run a query, or if you run a query
from the SQL panel, QMF does not start a report minisession.

If you don’t want QMF to start a report minisession, do one of the following:
v Change the value of DSQDC_DISPLAY_RPT to 0.
v Set the DSQADPAN parameter to 0 when you start QMF from the callable

interface.

See “SET GLOBAL” on page 62 for more information about global variables.

From a report minisession, you can issue the following commands and
synonyms for those commands (restrictions noted in parentheses):

Table 8. Valid commands in a minisession

v BACKWARD

v BOTTOM

v CANCEL (when pop-up
window active)

v CICS

v CMS

v DISPLAY (Report, Chart)

v END

v ENTER

v FORWARD

v GET GLOBAL

v HELP

v INTERACT

v ISPF

v LEFT

v MESSAGE

v PRINT (Report, Chart)

v QMF

v RETRIEVE

v RIGHT

v SAVE (Data)

v SET (Profile, Global)

v SHOW (Report, Chart)

v SWITCH (when Help
active)

v TOP

v TSO

QMF Commands in Applications

Chapter 8. QMF Commands in Applications 75

Table 9 contains a list of commands that are not valid in the minisession:

Table 9. Invalid commands in a minisession

v ADD

v CANCEL

v CHANGE

v CHECK

v CLEAR

v CONNECT

v CONVERT

v DELETE

v DESCRIBE

v DISPLAY (Query, Proc,
Profile, Form)

v DRAW

v EDIT

v ENLARGE

v ERASE

v EXIT

v EXPORT

v EXTRACT

v GETQMF

v IMPORT

v INSERT

v INTERACT

v IRM

v LIST

v NEXT

v PREVIOUS

v PRINT (Query, Proc,
Profile, Form)

v REDUCE

v REFRESH

v RESET GLOBAL

v RESET (Query, Proc,
Form)

v RUN

v SAVE

v SEARCH

v SHOW

v SORT

v SPECIFY

v START

v SWITCH

QMF returns an error message when you run an exec, a CLIST, or a procedure
that issues a restricted command.

QMF Commands in Applications

76 QMF: Developing QMF Applications

Chapter 9. Importing and Exporting QMF Objects

You can write applications that use QMF objects outside of the QMF
environment. To place QMF objects outside of the QMF environment, you
need to use the QMF EXPORT and IMPORT commands.

You can export the following objects:

chart data

form procedure (proc)

query report

table

When you export an object, QMF converts the object to an externalized format
and places it in a file, data set, or CICS data queue. The externalized format of
QMF objects is a powerful element of QMF application development. The
IMPORT command reads the externalized format from a file, data set, or CICS
data queue and places the object either in QMF temporary storage or in the
database (depending on how you issue the command).

You can export data and table objects in either the QMF or IXF format. The
format for form, Prompted Query, and report objects is a more complex
format called the encoded format. Charts are exported in Graphics Data Format
(GDF), a GDDM format.

This chapter describes all the QMF export formats and shows how you can
use them in your applications. Appendix B, “Export/Import Formats” on
page 227 describes the QMF format for data and defines the table and field
numbers for encoded format objects. For information about IXF format, see
Appendix C, “Integrated Exchange Format (IXF)” on page 241.

CICS users: If you write applications that use the IMPORT or EXPORT
commands, read “Rules and considerations when using CICS
queues” on page 121.

To see the syntax of the IMPORT and EXPORT commands, see QMF Reference
, and for information about importing and exporting QMF objects, see online
help.

© Copyright IBM Corp. 1983, 2002 77

What you can do with an exported file, data set, or CICS data queue

The import/export facility lets you:
v Provide query results to your application

The purpose of many applications is to use the data produced by a QMF
query. Use the QMF EXPORT command to get data out of the database and
into your application.

v Create objects within your application and use them in QMF
You can create an object outside of the QMF environment using the
appropriate format for the object. When you import the file, data set, or
CICS data queue containing the object into QMF, a new QMF object is
created.
You cannot import reports and charts into QMF.

v Store non-QMF objects in the database
When you import an object as a procedure or query object, QMF brings it
into the QMF environment as is; it does not insert additional records or
fields into the imported file. You can import any program or file that has a
record length of 79 bytes or less.

v Make QMF objects available to other environments or products.
CAUTION:
Exported objects transfered between systems or environments are
exposed to translation risks that can alter or destroy the exported object.
IBM does not recommend transfering exported objects between
environments running with different CCSIDs or character sets, such as
between EBCDIC and ASCII systems, or between different NLF
environments.

You can use the CONVERT QUERY command to convert a prompted query
or QBE query to an SQL query that you can export and use in other
products. For more information on the CONVERT command, see QMF
Reference.
You can transfer QMF objects:
– Between CMS sessions in VM
– Between QMF under TSO, or native OS/390 batch and QMF under CICS

using CICS extrapartition transient data queues
– Over networks with SENDFILE

v Save objects and data outside of the database
For example, in the middle of a program, you can export your data so that
an external program can manipulate it.

v Create bilingual applications
You can create a QMF form in your presiding language, and translate it to
English using the LANGUAGE= option on the EXPORT command. You can also

Importing and Exporting QMF Objects

78 QMF: Developing QMF Applications

use the LANGUAGE= option on the IMPORT and EXPORT commands to
translate an English form to your presiding language.

Exporting versus saving data

The difference between EXPORT DATA and SAVE DATA is in where and how
the object is stored, which affects what you can do with the results:
v Exporting a data object produces a file, data set, or CICS data queue. You

can read, modify, or print each sequentially, but you do all these operations
through QMF application programs or other external applications.

v The SAVE DATA command produces a database table. Whatever actions
you perform using saved data must be done through the database.

Data and table objects

When you run a query, QMF displays the result in a report that you can
export as either a data object or report object. When you export the report
object, the object maintains the format of the data specified in its form object.
When you export the report object as an HTML report, it is packaged with
appropriate HTML 3.0 coding. You can put the report on a web server for
display on the World Wide Web. QMF data and table objects are exported in
the form of raw data. See “Report objects” on page 111 for details on the report
object.

The raw data for the tabular display is stored in the temporary storage area as
a data object. Relational tables and views stored in the database are referred to
as table objects. The exported formats of a table in temporary storage (DATA)
and a table stored in the database (TABLE) are identical. An object exported
as data can be imported as a table, and vice versa.

Data and table objects can be exported in QMF format or Integrated Exchange
Format (IXF).

You can specify either DATAFORMAT=QMF or DATAFORMAT=IXF on your
EXPORT command to tell QMF the export format you want. The QMF format
is the default. The QMF format is described in “QMF format for data” on
page 227.

IXF has two formats: binary and character, which are described in “Binary
versus character” on page 83. The IXF format is described in Appendix C,
“Integrated Exchange Format (IXF)” on page 241.

You can create your own tables in a &file by specifying the QMF or IXF
format and importing the file, data set, or CICS data queuethat contains the
data you need. Include the required fields and add your own data as

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 79

appropriate. Then import this file, data set, or CICS data queue into QMF as a
table object. Here is an example of a command to import a file, data set, or
CICS data queue into the database as a table object:
IMPORT TABLE MYTABLE FROM MYDATA

For more information about the EXPORT and IMPORT commands, see QMF
Reference . CICS/VSE users should read “Rules and considerations when using
CICS queues” on page 121.

Interpreting a data object in QMF format: an example
You can calculate the length of the header record when you have the length of
the data records. In this example, each data record is 23 bytes long. “QMF
format for data” on page 227 explains that the first 12 bytes contain level and
number information. There are 24 bytes for each column of data, and there are
three columns. Thus, for this three-column data object, the header is 84 bytes:

(12 + (24 X 3) = 84).

If you export the following data from Q.STAFF:
ID NAME COMM
___ ________ ______
10 SANDERS -
20 PERNAL 612.45

You would use the following table to calculate the widths of each column:

Table 10. Calculating column widths

Column name Data type Data type width (length
in header)

Width of column

ID SMALLINT 2 2 + 2 = 4

NAME VARCHAR 9 2 + 2 + 9 = 13

COMM DECIMAL (7,2) 7 (7 + 1)/2 + 2 = 6

Length of data record: 23

Each header record is the same length as the data records: 23 bytes. Those 84
bytes are spread across four 23-byte header records; the last record is padded
with blanks.

Figure 16 on page 81 shows the header from the report and its hexadecimal
representation. The reversed-type numbers indicate notes following the figure.

Importing and Exporting QMF Objects

80 QMF: Developing QMF Applications

Figure 17 shows the data from the report and the hexadecimal representation
of that data. For information about what the byte positions mean, see “QMF
format for data” on page 227.

�1�REL 1.0
Object format level: 1.0

The object format level tells QMF which version of the object format
this object is using. Every time a QMF object format is changed, the
level number is changed; object formats are not changed with every
new release.

�2�X’0004’
Number of header records: 4

�3�X’0003’
Number of data columns: 3

�4�X’C9 C4’
Column name: ID

�5�X’1F4’
Data type: SMALLINT

�6�X’0002’
Column width: 2

�7�X’D5’
Nulls allowed: N signifies no

R E L 1 . 0 I D
1 D9 C5 D3 40 F1 4B F0 40 0004 0003 C9 C4 40 40 40 40 40 40 40 40 40

�1� �2� �3� �4�
N N A M E

2 40 40 40 40 40 40 40 01F4 0002 D5 00 D5 C1 D4 C5 40 40 40 40 40 40
�5� �6� �7�

Y C O M M
3 40 40 40 40 40 40 40 40 01C0 0009 E8 00 C3 D6 D4 D4 40 40 40 40 40

Y
4 40 40 40 40 40 40 40 40 40 01E4 07 02 E8 00 40 40 40 40 40 40 40

Figure 16. Sample header records for exported data object in QMF format. 40 is the hexadecimal
code for a blank character.

10 S A N D E R S
1 00 00 00 0A 00 00 00 07 E2 C1 D5 C4 C5 D9 E2 00 00 FF FF 00 00 00 40 40

�8� �9� �10�
20 P E R N A L

2 00 00 00 14 00 00 00 06 D7 C5 D9 D5 C1 D3 00 00 00 00 00 00 61 24 5C

Figure 17. Sample data records for exported data object in QMF format

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 81

�8�X’0A’
Value for first column of first data record: 10

�9�X’07’
Length of name in second column of first data record: 7

�10�X’FFFF’
Indicator information: column contains a null value

If you want more information about the files, data sets, or CICS data queues
that are generated when data or table objects are exported, see “Specifications
for externalized QMF objects” on page 120.

For an example of the IXF format, see Appendix C, “Integrated Exchange
Format (IXF)” on page 241.

Rules and information for export/import of data and table objects
Here are some general considerations for importing and exporting data or
table objects.

The file, data set, or CICS data queue stays allocated
The QMF IMPORT DATA command appears to store the data in the QMF
temporary storage area and display the report on the screen. Actually, only a
portion of the data is stored and displayed. The file, data set, or CICS data
queue remains open and allocated to QMF. QMF reads records when the user
scrolls through the file, data set, or CICS data queue.

This connection is maintained until the data object is replaced or reset, or
QMF has read all the records. At this point, the file, data set, or CICS data
queue is closed and is no longer considered allocated to QMF. This means
that an application should not attempt to delete or alter a file, data set, or
CICS data queue allocated to QMF with an IMPORT DATA command. The
application needs to either start using another data source or empty the QMF
temporary data storage area (RESET DATA) before it tries to alter or delete a
data set it has been reading.

During the execution of the IMPORT command, QMF does not lock the file,
data set, or CICS data queue while it is being read. It does not take steps to
prevent the file, data set, or CICS data queuefrom being altered while it is
being read. If the file, data set, or CICS data queue is erased or altered in any
way before QMF has finished reading it, the results are unpredictable and can
cause a system error.

An incomplete data prompt can occur when QMF needs to complete the
object and there isn’t enough storage for the data object. QMF needs to
complete the data object if, for example, you requested the export of an object
to the same file, data set, or CICS data queue. This situation implies that you

Importing and Exporting QMF Objects

82 QMF: Developing QMF Applications

previously performed an IMPORT DATA command from the same file, data
set, or CICS data queue now named on the EXPORT command. For more
information about the incomplete data prompt and actions to take, see either:

Binary versus character
When you export a data or table object using the QMF format or the binary
form of the IXF format (OUTPUTMODE=BINARY), the data is in a raw binary
form. However, when you use the character form of IXF
(OUTPUTMODE=CHARACTER), the exported data is in EBCDIC form.
Exported data for form, report, procedure, and SQL query objects is also in
EBCDIC form.

Application programs written in languages such as PL/I, COBOL, and
assembler can usually read and process binary data faster and more efficiently
than character data. Interchanging data from one IBM product to another is
more efficiently done in binary. However, if your application programs are
written in REXX, or if you’re processing the data with an editor, you’ll find
EBCDIC (character) data to be more efficient.

Errors
After QMF imports data from a file, data set, or CICS data queue, QMF
displays the report panel and a confirmation message. If the file, data set, or
CICS data queue contains format errors, QMF does not display the report
panel; instead, QMF displays an error message on the object panel that was
current before QMF processed the IMPORT command. However, if the current
object panel was the Report panel, and QMF finds errors in the imported
data, QMF displays the Home panel and an error message.

Unlike the form object, when a data or table object is imported, the format of
the input file, data set, or CICS data queue must be precisely the same as the
format of the output file, data set, or CICS data queue that would be
generated if the same object were exported using the EXPORT DATA or
EXPORT TABLE command.

Procedures and SQL queries

The format of the file, data set, or CICS data queue representing these objects
is the simplest of all the objects. Each record in the file, data set, or CICS data
queue is essentially an image of a line as it appears on the screen (fixed
length record of 79 bytes).

This is an SQL query:

SQL query MODIFIED LINE 1

SELECT *
FROM Q.STAFF

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 83

This is the query in its externalized format:

Because of the simplicity of the record format, creating or editing an SQL
query or procedure outside of QMF is very straightforward. An SQL query or
procedure consists of a fixed-length file, data set, or CICS data queue
containing 79-byte query or procedure records. Import the resulting file, data
set, or CICS data queue, and your query or procedure is now in the QMF
temporary storage area ready to be run.

Chart objects

You can export a chart object for processing outside of the QMF environment.
A chart cannot be saved as a QMF object in the database or retrieved from the
database. You cannot import charts into QMF.

When QMF exports a chart object, it converts the data from the report to a
Graphics Data Format (GDF). GDF, a GDDM format, is an existing standard
for data interchange. You can print the exported chart data using GDDM
utilities, or include it in documents—script files, for example. Refer to a
GDDM application programming guide for details about the GDF format.

You can use an exported chart object just as you would any GDF formatted
file or data set. For example:
v Using the Document Composition Facility (DCF), an application can

combine a QMF report (using a printed or exported report) with a QMF
chart (using an exported chart) and send the formatted information to a
printer.

v Using a graphics editor such as the GGXA graphics editor, an application
can make further modifications and refinements to an exported QMF chart.

Encoded objects

The form and prompted query objects are exported and imported in an
encoded format, which is a format that translates an object to a tabular
structure. The encoded format helps you manipulate individual parts of an
object more easily. The report objects are also exported in an encoded format;
however, reports cannot be imported.

* * * Top of File * * *
SELECT *
FROM Q.STAFF

* * * End of File * * *

Importing and Exporting QMF Objects

84 QMF: Developing QMF Applications

The encoded format of a form, report, or prompted query (relational or
entity-relationship) consists of the following records:
v Fixed format records: Header records (H) (see page85)
v Variable format records

– Data value records (V) (see page89)
– Data table description records (T) (see page91
– Table row records (R) (see page95)
– End of object record (E) (see page97)

An application data record, denoted by an asterisk (*), can be used by
application programs to store information and comments associated with the
object in the exported file. See “Application data record (*)” on page 97 for
details.

In addition to the preceding records, an exported report can contain the
following records:
v Report line records (L) (see page114)
v Data continuation records (C) (see page116)

For specifications about the exported files, data sets, or CICS data queues, see
“Specifications for externalized QMF objects” on page 120.

Fixed format records
Most records have a variable format. However, header records have a fixed
format, even though the file or data set containing the records can be of
variable format.

Header records (H)

These records are used to identify the contents of the exported form, report,
or prompted query. A header record is the first record of the exported file. It
describes the characteristics of the object.

A header record contains the information described in Table 11 (an asterisk
indicates that the field is required for import):

Table 11. Header record information

Byte Position Information and Type

01* Header record indicator (H)

02 Blank

03-05* Product identifier (QMF)

06 Blank

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 85

Table 11. Header record information (continued)

Byte Position Information and Type

07-08 QMF release level in which the form, report, or prompted query was exported:
11 for QMF Version 7

09 Blank

10* Type of object: F for form R for report T for relational prompted query E for ER
prompted query

11 Blank

12-13* QMF object level 01 for report 04 for form 01 for prompted query (relational or
ER)

14 Blank

15* Format of object E for format used to export form, report and prompted query
(relational or ER) objects

16 Blank

17 Status of the object: E - Contains errors (for form only) W - Contains warning V
- Valid

18 Blank

19 Whole or partial object indicator W for whole object

20 Blank

21 National language in use when object was exported: E for English

22 Blank

23* Action against object in the temporary storage area when importing (R for
replace object)

24 Blank

25-26 Length of control area in the beginning of each following record: 01 for form 02
for report 01 for prompted query (relational or ER)

27 Blank

28-29 Length of integer length fields specified in V and T records (03)

30 Blank

31-38 Date stamp: yy/mm/dd

39 Blank

40-44 Time stamp: hh:mm

45 Blank

46-50 SSSSS, for OS/2 objects

51 Blank

52-56 DDDDD, for OS/2 objects

The object level in the H record denotes a change in an object’s format. All
object formats begin with object level 01; if a later release of QMF changes an
object format, the object level is increased by 1. The object level increases only
when the change in the format could potentially create an error in your
application. Check for level changes in the object types of reports, forms, and
prompted queries, which have the encoded format in Figure 17 on page 81.

Importing and Exporting QMF Objects

86 QMF: Developing QMF Applications

For example, the externalized format for form objects handles break
information differently in Version 3.2 than in previous releases. Because of this
change, the object level for form objects increased from 03 to 04 for Version
3.2. In general, the following changes cause the object level to be incremented:
v Field numbers in V or R records are removed or replaced.
v The layout of a particular record type is redefined.

However, new values for a field or new field numbers do not create errors in
your application. Check the object level value to ensure that objects you
import do not create problems for your application.

Example of an H record for a prompted query:
H QMF 11 T 01 E V W E R 01 03 98/11/20 17:12

Value from
example

Description

H QMF 11 T A Version 7 QMF relational Prompted Query header record

01 Structure of the prompted query is at object level 1

E Format type is that for forms, reports, and prompted queries

V The exported prompted query does not contain any errors or warnings

W The file contains the entire prompted query

E The national language in use when object was exported is English

R When importing, object in temporary storage area is replaced

01 Length of control area is 1 byte

03 Length of integer length fields is 3 bytes

98/11/20 Date stamp

17:12 Time stamp

See Figure 19 on page 101 for a complete example of the Prompted Query
encoded format.

Example of an H record for a form:
H QMF 11 F 04 E V W E R 01 03 98/12/16 22:08

Value from
example

Description

H QMF 11 F A Version 7.2 QMF form header record

04 Structure of the form is at object level 4

E Format type is that for forms, reports, and prompted queries

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 87

Value from
example

Description

V The exported form does not contain any errors or warnings

W The file contains the entire form

E The national language in use when object was exported is English

R When importing, object in temporary storage is replaced

01 Length of control area is 1 byte

03 Length of integer length fields is 3 bytes

98/12/16 Date stamp

22:08 Time stamp

See Figure 20 on page 104 for a complete example of the form encoded format.

Example of an H record for a report:
H QMF 11 R 01 E V W E R 02 03 98/10/14 16:20

Value from
example

Description

H QMF 11 R A Version 7.2 QMF report header record

01 Structure of the report is at object level 1

E Format type is that for forms, reports, and prompted queries

V The exported report does not contain any errors or warnings

W The file contains the entire report

E The national language in use when object was exported is English

R Ignored

02 Length of control area is 2 bytes

03 Length of integer length fields is 3 bytes

98/10/14 Date stamp

16:20 Time stamp

See Figure 22 on page 113 for a complete example of the report encoded
format.

Variable format records
With the exception of H records, which are fixed format records, all records
are variable format records:

Indicator
Record type

Importing and Exporting QMF Objects

88 QMF: Developing QMF Applications

V Data value (see “Data value records (V)”)

T Data table description (see “Data table description records (T)” on
page 91)

R Table row (see “Table row records (R)” on page 95)

E End of object (see “End-of-object record (E)” on page 97)

* Application data (see “Application data record (*)” on page 97)

L Report line (see “Report line records (L)” on page 114)

C Data continuation (see “Data continuation records (C)” on page 116)

Variable format records are accepted on input. This refers to the records
themselves, not the files, data sets, or CICS data queuesthat contain the
records. Variable format records have the following general form:

The control area is:

Byte position
Description

01 Record identifier (H,V,T,R,E,*,L,C)

02 Blank (sometimes omitted; see specific type of variable format record)

The record data area is a variable length area containing information about
that specific record. Fields in this area are separated by a delimiter (a blank
character is used in this book).

Data value records (V)
Value records are used to provide a value for a single field in an object, such
as blank lines before the heading in the form. V records contain:
v A field number unique to the object
v The field’s length
v The field’s value

Appendix B, “Export/Import Formats” on page 227 lists the assignments of
field numbers to the fields contained in the prompted query, form, and report
objects.

The contents of a V record are:

Control area for V records:

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 89

Byte Position
Description

01 Value record identifier (V)

02 Blank (used only for reports, omitted for forms and prompted query)

Record data area for V records

Byte position
Description

01 Blank

02-05 Field number (1001-9999)

06 Blank

07-09 Length of the data value (000-999). Can also be an asterisk (*)
followed by two blanks. An asterisk indicates that the data value is
delimited by the end of the record.

10 Blank

11-end Data

Notes:

1. Record data area byte positions are offset from the end of the control area,
the length of which is indicated in the header record.

2. An omitted data value (an end-of-record or only blanks following the
length field) indicates that the field contains a null value.

3. If the length field is zero, the default value for the field is applied and a
warning message is issued.

4. If the specified length is different from the actual data that follows, QMF
issues a warning.

Importing and Exporting QMF Objects

90 QMF: Developing QMF Applications

Examples of V records

Form: V 1511 * NONE

(See page 232 for a complete list of field numbers.)

Field Width of wrapped report lines

Value 'NONE'

Report: V 1001 006 PERIOD

(See page 238 for a complete list of field numbers.)

Field Profile DECIMAL option

Length
6

Value 'PERIOD'

Prompted query: V 1501 001 K

(See page 230 for a complete list of field numbers.)

Field Duplicate rows

Length
1

Value keep

Data table description records (T)
In the encoded format, most data in an object appears in tables. These are not
relational tables in the database, but rather a means of grouping information
within the encoded format.

Each T record defines one table, and each table corresponds to a particular
part of an object, such as summary calculations in the form. Thus, one
exported file can contain many of these encoded tables. See Appendix B,
“Export/Import Formats” on page 227 for information about field numbers for
encoded tables and their columns.

A T record is always followed by R records. The T record describes the R
records that follow it. If there are no R records following a T record, the table
is omitted.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 91

Be sure your application program refers to the contents of tables of an
exported form, report, or prompted query by using the encodings in the T
record to correctly locate the values in the R records. Your application
program should not use fixed offsets to locate information in R records.

The contents of a T record are as follows:

Control area for T records:

Byte position
Description

01 Table record identifier (T)

02 Blank (used only for reports, omitted for forms and prompted queries)

Record data area for T records

The byte positions in the following list are offsets following the end of the
control area, the length of which is indicated in the header record.

Byte position
Description

01 Blank

02-05 Table number (1001-9999)

06 Blank

07-09 The number of rows (R records) in this table. An asterisk (*) used
instead of a numeric value means that the table consists of all the R
records that follow.

10 Blank

11-13 The number of columns in the record (000-999)

14 Blank

15-18, 24-27, ...
The field number for this column (repeating field)

19, 28, ...
Blank (repeating field)

20-22, 29-31, ...
The length of the data values in this column (repeating field)

Bytes 11-13 (number of columns) indicate how many field number/data value
length pairs follow; this means that the information in bytes 15 through 22 is
repeated for each column.

Importing and Exporting QMF Objects

92 QMF: Developing QMF Applications

Examples of T records (Form)

T 1110 * 002 1112 007 1113 018

(See page 232 for a complete list of field numbers.)

Field Column heading table

Rows All

Columns
2

Column field
Column data type

Length
7

Column field
Column heading

Length
18

Examples of T records (Prompted Query)
T 1110 008 002 1112 001 1113 027

(See page 230 for a complete list of field numbers.)

Field Table definitions table

Rows 8

Columns
2

Column field
Table ID

Length
1

Column field
Table name

Length
27

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 93

Examples of T records (Report)
T 1010 005 003 1012 008 1013 003 1014 006

(See page 238 for a complete list of field numbers.)

Field Formatted report table

Rows 5

Columns
3

Column field
BREAKn

Length
8

Column field
Edit code for data

Length
3

Column field
Starting position for field contain data

Length
6

Rules and notes:

1. When a form or prompted query is imported, the number of R records
must match the row count specified in bytes 07-09 of the record data area
of the T record. Otherwise, QMF issues a warning.

2. When a form or prompted query is imported, the number of columns
indicated in bytes 11-13 must agree with the field number/length pairs in
the bytes that follow. If not, QMF issues a warning.

3. The number of field number/length pairs is limited to the number of
columns in the table, and their order is arbitrary.

4. Columns with a length of zero (or not included in this table) are set to
their default values when the object in the temporary storage area is
updated and a warning is issued. This is not always true for Prompted
Query. Where possible, a default is supplied; otherwise an error occurs.

5. To set a column field to blank, the column must have a positive length in
the T record and a blank value in the R record.

Importing and Exporting QMF Objects

94 QMF: Developing QMF Applications

Table row records (R)
R records provide a set of values for a single row in an encoded table. R
records contain a list of values arranged in an order described by the
associated T record. An R record matches the description of the positions and
lengths of the data values specified in the T record. The contents of an R
record are as follows:

Control area for R records:

Byte position
Description

01 Row record identifier (R)

02 Blank (used only for reports, omitted for forms and prompted queries)

Record data area for R records

Following the control area, the data area for R records consists of a series of
values separated by a delimiter (blank character). The format is as follows:
_val.._val..._val..

where val... is the data value for this row and column and _ is the delimiter.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 95

Examples of R records
In these examples, the length of the column value is always given in the
T record for that column.

Form: R 2 SALARY

(See page 232 for a complete list of field numbers.)

Column Value
' 2'

Column Value
'SALARY'

Report: R GROUP L2

(See page 238 for a complete list of field numbers.)

Column Value
'GROUP '

Column Value
'L2'

Prompted query: R C A.DEPT

(See page 230 for a complete list of field numbers.)

Column Value
'C'

Column Value
'A.DEPT'

Rules and notes:

1. An R record must immediately follow another R or a T record.
2. The number of data values (v..v) must match the description in the

associated T record.
3. A data value length of zero in the associated T record indicates that no

value is to be applied to this row and column of the object; that is, it is set
to its default value. However, the presence of the field in the T record
requires that the R record contain an extra blank for this field (a
zero-length value results in one blank followed by another in the R
record).

Importing and Exporting QMF Objects

96 QMF: Developing QMF Applications

End-of-object record (E)
The E record specifies the end of an exported object. It is the last record of an
exported file, appearing as the character E. For an exported report, an E record
is followed by a blank character to complete its control area. For a form, the
blank is omitted.

Any records following the E record are ignored. If an E record is not included
with the file being imported, QMF assumes that end-of-file implies the end of
the object.

Application data record (*)
Application data records allow application programs to include their own
data, such as comments, associated with a given object in the external file.
Application programs frequently use these records as comment records to
further describe the object in the file. The information following the asterisk is
essentially ignored and has no effect on the input process.

Application data records can appear anywhere in the external file except
before the header (H) record. QMF does not write out application data (*)
records on export. However, you can use these records in the file, data set, or
CICS data queue you create. They are useful as comment records. The
contents of an application data record are as follows:

Byte position
Description

01 Application data record identifier (*)

02-end of record
Data

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 97

Example of an application data record
*This is the form that groups by DEPT.

This comment would be in an exported form.

Exporting encoded format objects
When you export an object with the encoded format:
v All table and field numbers are written out as four-digit numbers.
v The table columns are written out in the order in which they normally

appear in the object, except that the column with the maximum length is
moved to the right end of the table record and associated row records.

v Numeric lengths are three digits long, including leading zeroes, if necessary.
v The blank character is used as a delimiter in all records.
v The delimiter is not written following the last character of each record.
v Blanks are written in all reserved fields.
v An E record is the last record written to the output file.

Importing encoded format objects
When you import a form, report, or prompted query:
v The file can consist of variable or fixed-length records. See “Specifications

for externalized QMF objects” on page 120 and Appendix B,
“Export/Import Formats” on page 227.

v The record identifier (H, V, T, R, E, *, L, or C) must be in the first position
of every record.

v The first two bytes are reserved for control information (the control area).
v Every data field (including field numbers, lengths, and values) must be

preceded and followed by one delimiter. Exception: The last data field in a
record need not be followed by a delimiter because the end-of-record acts
like a delimiter. (The examples in this book use the blank character as the
delimiter.)

v If QMF encounters a duplicate data value or table during IMPORT, it
replaces the previous value or table. However, duplicates are not allowed
where they would violate the rules for a particular object. For example, the
number of columns provided for a form can’t be changed after the first
COLUMNS table has been processed.

v Table numbers, field numbers, and numeric lengths, can contain leading
zeroes or leading blanks. However, trailing blanks (except for the blank
delimiter) are not allowed; fields must be right-justified.

v When * is used instead of a length or count, it must be left-justified and
padded with trailing blanks.

Importing and Exporting QMF Objects

98 QMF: Developing QMF Applications

v If the value supplied for a data entry field is shorter than the field, it is
padded with trailing blanks. If it’s longer, it is truncated.

v If the record is shorter than its fixed-format length, those fields left
unspecified are assumed to be blank.

Prompted query objects

This section refers to the external format of relational prompted queries.

An exported prompted query object contains the information displayed in the
echo area of the Prompted Query primary panel. Exported Prompted Query
files, data sets, or CICS data queues can either be imported into the QMF
temporary storage area or directly into the database. When you import a
prompted query, QMF checks to see whether the incoming query is consistent
with the data in the database. For example, if the prompted query being
imported has columns A, B, and C in table XYZ, QMF verifies that table XYZ
with columns A, B, and C exists in the database.

For a list of table and field numbers associated with prompted query objects,
see “Table and field numbers for the prompted query object” on page 230.

Exporting a prompted query object
This section illustrates an example of an exported prompted query. Figure 18
on page 100 shows the Prompted Query base panel echo text of a prompted
query to be exported.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 99

Figure 19 on page 101 shows the format of the exported prompted query.

Tables:
Q.STAFF(A)
Q.ORG(B)
Q.STAFF(C)

Join Tables:
A.DEPT And B.DEPTNUMB
And A.ID And C.ID

Columns:
A.ID
A.DEPT
A.JOB
A.SALARY
DEPTNUMB
C.SALARY
C.SALARY+A.COMM

Row Conditions:
If A.SALARY Is Greater Than 10000
And A.DEPT Is Equal To 84 or 96

Sort:
Descending by C.SALARY+A.COMM

Duplicate Rows:
Keep duplicate rows

Figure 18. Sample prompted query to be exported

Importing and Exporting QMF Objects

100 QMF: Developing QMF Applications

Importing a prompted query
If you want to import a prompted query object that your application edited or
generated, be aware of the following:
v When a prompted query file is imported, the incoming records must be in a

specific order following the header (H) record. The order should be:
1. T records for table definitions
2. R records for table names
3. T records for column definitions
4. R records for columns
5. Row condition records (field number 1310) must be in order within each

condition according to the entry type sequence number (field number
1312), that is, the same order that row data appears in the Prompted
Query echo area.

6. The remaining records can be in any order.

H QMF 11 T 01 E V W E R 01 03 98/11/20 17:12
T 1110 003 002 1112 001 1113 050
R A Q.STAFF
R B Q.ORG
R C Q.STAFF
T 1150 002 002 1152 020 1153 020
R A.DEPT B.DEPTNUMB
R A.ID C.ID
T 1210 007 002 1212 001 1213 255
R C A.ID
R C A.DEPT
R C A.JOB
R C A.SALARY
R C B.DEPTNUMB
R C C.SALARY
R C C.SALARY+A.COMM
T 1310 009 003 1312 001 1313 008 1314 255
R 1 C A.SALARY
R 2 IS GT
R 3 10000
R 4 I
R 1 C A.DEPT
R 2 IS EQ
R 3 84
R 3 96
R 4 A
T 1410 001 002 1412 001 1413 255
R D C.SALARY+A.COMM
V 1501 001 K
E

Figure 19. The exported file, data set, or CICS data queue

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 101

v The Tables table must appear before any other tables or V records.
v The value of row count in the Tables T record must be * or an integer from

0 through 15. A zero value in the row count causes everything in the query
to be ignored, which means that an empty query is imported.

v QMF does not issue warnings for Prompted Query imports.
v If a second Tables table (table 1110) is specified, QMF issues an error, and

the contents of the table are ignored.
v Prompted Query does not supply default values on import.
v If there is a Sort table, there must be a Columns table preceding it.
v QMF accepts duplicate records in the import file. The most recent value for

the record is used.
v All column names must be qualified by the table identifier during import.
v When a prompted query is exported to a preallocated data set, the

minimum logical record length (LRECL) allowed is 259 bytes.
v The exported format of a prompted query is the same regardless of the

national language used; the format is language independent. The language
byte in the header record is ignored during import. You can see the codes
used in exporting a prompted query in “Table and field numbers for the
prompted query object” on page 230.
Summary functions and expressions are not translated; thus summary
functions COUNT, AVG, SUM, MIN, and MAX remain unchanged. They
are SQL symbols, which are not translated.

Form objects

The form object contains all the information specified in all the QMF form
panels. When you export a form, QMF converts the form panels you changed
to the encoded format. The following panels are in the encoded format only if
you modified the panel:
v FORM.BREAKn, where n = 3 to 6
v FORM.CALC
v FORM.CONDITIONS
v All variation panels greater than 1 for FORM.DETAIL

Eliminating unused panels from the externalized format helps you save space
on your system.

Creating a default form: an example
The LAYOUT command allows the user to view a sample report based on a
form (in QMF temporary storage or in the database) without requiring any
data to be in QMF temporary storage. LAYOUT generates sample data,
imports it into QMF, and applies the form to it to create a report.

Importing and Exporting QMF Objects

102 QMF: Developing QMF Applications

Note to CICS users
The LAYOUT command requires ISPF, which is not available in CICS.

Users can look at the form without running a query by creating a form,
exporting it, and then importing it into QMF as part of initialization. If you
import the form during the initial procedure, users can access the form by
entering SHOW FORM.

The minimal form you can import is a header and end record. However, to
use FORM.COLUMNS, you need to have at least one column of information.

You can create a default form by running a query that creates an empty
report:

When QMF displays the report, enter EXPORT FORM TO DEFAULT (including the
(QUEUETYPE=xx parameter in CICS). Your file, data set, or CICS data queue
named DEFAULT contains the information shown in Figure 20 on page 104.

SQL query

SELECT JOB
FROM Q.STAFF
WHERE NAME=’empty_set’

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 103

H QMF 11 F 04 E V W E R 01 03 98/12/16 22:08

T 1110 001 011 1112 007 1113 040 1114 007 1115 006 1116 005 1117 005 1118 003 1119 008 1120 008
1122 006 1121 050

R CHAR JOB 2 5 C 1 DEFAULT
DEFAULT NO

V 1201 001 0
V 1202 001 2
T 1210 001 003 1212 004 1213 006 1214 055
R 1 CENTER
V 1301 001 2
V 1302 001 0
T 1310 001 003 1312 004 1313 006 1314 055
R 1 CENTER
V 1401 002 NO
V 1402 001 1
V 1403 001 0
T 1410 001 003 1412 004 1413 006 1414 055
R 1 RIGHT
V 1501 001 1
V 1502 003 YES
V 1503 003 YES
V 1504 003 YES
V 1505 003 YES
V 1506 003 YES
V 1507 003 YES
V 1508 003 YES
V 1509 003 YES
V 1510 003 YES
V 1511 004 NONE
V 1512 002 NO
V 1513 007 DEFAULT
V 1514 002 NO
V 1515 004 NONE
V 2790 001 1
V 2791 003 YES
V 2805 003 YES
T 2810 001 003 2812 004 2813 006 2814 055
R 1 LEFT
V 2901 002 NO
V 2902 001 1
V 2904 001 0
V 2906 002 NO
V 2907 002 NO
T 2910 001 003 2912 004 2913 006 2914 055
R 1 LEFT
V 3080 001 1
V 3101 002 NO
V 3102 002 NO
V 3103 001 0
V 3104 001 0
T 3110 001 003 3112 004 3113 006 3114 055

Figure 20. Sample format of an exported form (Part 1 of 2)

Importing and Exporting QMF Objects

104 QMF: Developing QMF Applications

You can import your default file, data set, or CICS data queueevery time a

user logs on by issuing the command IMPORT FORM FROM DEFAULT (including
the (QUEUETYPE=xx parameter in CICS) in your initial procedure

Considerations for QMF form objects in applications
When using a QMF form in an application, you need to keep a few things in
mind:
v Creating a form file, data set, or CICS data queue outside of QMF

If you create a form &file outside of QMF (that is, you don’t create it using
EXPORT FORM), it is not necessary to have a complete form object to
import it successfully into QMF. All you really need is the header (H)
record followed by the T and R records of the COLUMNS table. Default
values are applied for the rest of the form when it’s imported.
You have more flexibility when you create your own form file, data set, or
CICS data queue—it doesn’t have to be exactly like the file, data set, or
CICS data queue you get if you use EXPORT FORM. For example, when
QMF exports a form, all data values in a value (V) record are preceded by a
length, whereas you can use an asterisk (*) signifying that the data value is
delimited by the end of the record when you import a form.
If an R record count in an imported form is less than the number of default
lines QMF has already allocated for the associated area in the default form,
QMF keeps the excess lines.

v Checking the object level in the header record

R 1 LEFT
V 3201 002 NO
V 3202 001 1
V 3203 001 0
V 3204 001 1T 3210 001 003 3212 004 3213 006 3214 055
R 1 RIGHT
V 3080 001 2
V 3101 002 NO
V 3102 002 NO
V 3103 001 0
V 3104 001 0
T 3110 001 003 3112 004 3113 006 3114 055
R 1 LEFT
V 3201 002 NO
V 3202 001 1
V 3203 001 0
V 3204 001 1
T 3210 001 003 3212 004 3213 006 3214 055
R 1 RIGHT
E

Figure 20. Sample format of an exported form (Part 2 of 2)

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 105

The object level in the header record of a form file, data set, or CICS data
queue tells you the level of the format structure at the time the form was
generated. (Object level is indicated in bytes 12 and 13 of the header record
as described in 85.) You can make sure that your application properly
interprets the contents of the form file, data set, or CICS data queue by
checking that the object level represents the format upon which your
application is based.

v Using application data records

The application data records mentioned in “Application data record (*)” on
page 97 can be useful in your application program. They allow you to
include your own comments within a file, data set, or CICS data queue for
a form object. You can place them anywhere in the file, data set, or CICS
data queue following the header record. When QMF reads such a record it
ignores all data in the record following the *. The record therefore, has no
effect on the import process.

v Importing and exporting date/time information

If your installation supports date/time data types and you export a form
with date/time information, you cannot subsequently import that form
using a QMF installation that does not support date/time data types. If you
do, the IMPORT command processing stops and QMF issues an error
message.

v Break field numbers changed for QMF Version 3.2

Instead of including table and field numbers for each Break panel, QMF
Version 3.2 now uses one field number (3080) to act as a “trigger” to
indicate which Break panel receives the information that follows it.
If you create Break panels in an exported file, data set, or CICS data queue,
you can set field 3080 to the number of the Break panel you want. Valid
values for this field are 1 through 6 only.
You can use any of the six break panels in an encoded file, data set, or
CICS data queue without having to define all the panels. For example, you
can create a Break5 panel without creating Break panels 1 through 4.

v Form application migration aid

Because QMF introduced new field numbers for the Break panels in Version
3.2, and these new numbers are not compatible with earlier versions of
QMF, the object level of an exported form has increased to object level 4.
The form objects were not changed between QMF Version 3 Release 1 and
Version 3 Release 1 Modification 1 (Version 3.1.1) or between Version 3.1.1
and Version 3 Release 2 (Version 3.2).
When upgrading from QMF Version 2.4 or earlier (including QMF VSE
Version 1) to QMF Version 3.2, you should upgrade your current
applications to reflect the new Break field numbers. However, QMF Version
3.2 provides a Form Application Migration Aid that lets you install Version
3.2 and still use existing applications that use the old Break field numbers.

Importing and Exporting QMF Objects

106 QMF: Developing QMF Applications

When you export QMF Version 3.2 form objects, this aid converts the new
Break field numbers in these form objects to their QMF Version 2.4
counterparts. Your existing application can then run with QMF Version 3.2
without requiring an immediate upgrade.
Important: The Form Application Migration Aid does not allow you to
export QMF Version 3.2 forms and use them with QMF Version 2.4.

v Restrictions for using forms in CICS

Because REXX is not available under QMF CICS, the areas on the QMF
form that rely on REXX do not work if you try to run the form in the CICS
environment. These areas include anything entered on the FORM.CALC
panels, the FORM.CONDITIONS panels, and the Specify Definition
window. Therefore, REXX calculations, conditional row formatting, and
column definitions are not available to QMF CICS users.

For additional information and rules governing the form files, data sets, or
CICS data queues for input and output, see “Importing encoded format
objects” on page 98.

Importing a form object
When you import a form, these fields must be in uppercase:
v Record identifier for all records
v The following fields in the header record:

– Product identifier (QMF)
– Type of object (F)
– Format of object (E)
– Action against object (R)

v Data type values (NUMERIC, CHAR, GRAPHIC, UNKNOWN) in the R
records for the COLUMNS table. If your installation supports date/time
data types, data type values DATE, TIME, and TIMEST must also be in
uppercase.

v All the form keywords and substitution variables used in the form panels.
When a form is imported, all the input in the form is left intact. If a form
keyword is in lowercase, the error indicator in the form panel is turned on.
To correct the error, the field must be typed over. If the data type value is
not in uppercase, an error occurs, and the IMPORT ends.

The T record of the COLUMNS table (field number 1110) must immediately
follow the header record, and it must include a numeric count of the number
of rows in the table (an * row count is not allowed).

If the entire COLUMNS table has been read in, unspecified fields are set to
their default values, and the form is displayed.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 107

Variation panels
The variation number field (field number 2790) determines which variation
panel is updated by all the variation panel information that follows the field.
This V record should precede all other V, T, and R records for a given
variation panel.

If a value for a particular variation appears more than once in the encoded
format, the later values replace the original values. The number of variations
in the form are equal to the highest variation number in the form. There is no
required order for variation numbers when importing.

Translated forms
When you import an English language form into a non-English session, QMF
automatically translates the reserved words in the form into your current
session’s language if the national language identifier in the H record is an E.

Omitting data type, edit code, and width in an imported form
In the COLUMNS table, data type (field number 1112), edit code (field
number 1117), and width (field number 1116) can optionally be omitted when
the following rules are observed:
v Edit code must be included if data type and width are omitted. Based on

the specified edit code, QMF inserts appropriate defaults for data type and
width.

v Data type must be included if edit code and width are omitted. QMF
provides default values for edit code and width.

v Width must be accompanied by either data type or edit code.

Table 12 contains information about values for the column data type field.

Table 12. Values for Column Data Type field

Data Type Value
(QMF form)

Data Type
Number

(Database form)
Character String
(Database form) Meaning

DATE 384 DATE Date

TIME 388 TIME Time

TIMEST 392 TIMESTAMP Time stamp

NUMERIC

496
500
484
480

INTEGER
SMALLINT
DECIMAL
FLOAT

Integer
Small integer
Decimal
Floating point

CHAR

448
452
456

904

VARCHAR
CHAR
LONG VARCHAR

ROWID

Varying character
Fixed character
Long varying

character
Row identifier

Importing and Exporting QMF Objects

108 QMF: Developing QMF Applications

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Table 12. Values for Column Data Type field (continued)

Data Type Value
(QMF form)

Data Type
Number

(Database form)
Character String
(Database form) Meaning

GRAPHIC

464
468
472

VARGRAPHIC
GRAPHIC
LONG VARGRAPHIC

Varying graphic
Fixed graphic
Long varying

graphic

In addition to the preceding data type values, there is an UNKNOWN data
type that QMF uses in response to a U, V, or invalid edit code.

Detecting errors during import
If QMF detects an error in the format of the form file during import, the
import function is ended with a message describing the error and its location
in the file.

If an error is encountered in the header record and a form already exists in
the temporary storage area, the existing form is displayed. If the form is
successfully imported, QMF displays the form panel.

If an error is encountered after the header record is read, any existing form in
the temporary storage area is discarded, and the Home panel is displayed.
However, if the data object exists, QMF generates a default form for the data,
but does not display it.

Certain minor errors detected by QMF do not terminate the import. In such
cases, QMF issues a warning message and, where appropriate, applies
defaults. Some examples are:
v V records

– Zero length fields.
– Specified length field does not match the length of data actually

supplied.
v T records

– Zero column length.
– The number of columns specified does not match the following field

number/length pairs.

You can respond to errors and warnings in either of two ways:
v Fix one problem at a time.
v Run the IMPORT FORM command with SET PROFILE (TRACE=L2).

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 109

Running the IMPORT FORM command with SET PROFILE (TRACE=L2) gives
you a list of all the message numbers related to the IMPORT command. The
command:
HELP message_number

displays the error message for that message number.

Exporting a form object
The format of forms exported before QMF Version 1 Release 2 is different
from the format described in this section; however, QMF continues to accept
forms exported with an earlier release of QMF. When such forms are imported
or displayed in later releases, there can be some performance degradation.

“Table and field numbers for the form object” on page 232 lists the assignment
of field numbers to the various parts of the form object. It also shows which
parts of the form are tables and which are individual values in the exported
file. Column data type (field 1112) is not displayed on the form panels but is
associated with the form in its external format.

The column data type is not required when a form is imported. If it is missing
during import, QMF provides default data type information from the edit
codes. See “Importing a form object” on page 107 for more information.
During export, the data type keyword (field number 1112) QMF provides is
based on the specified edit code. For a U, V, or invalid edit code, QMF
specifies the data type keyword UNKNOWN. Table 13 shows the data type
keywords QMF generates for the edit codes specified. In this table, x
represents the number of decimal places to be displayed, where x is an integer
from 0 to 99.

Table 13. Data type keywords generated for edit codes specified

Edit Code Specified Data Type Keyword

B, BW, C, CW, CT, CDx, X, XW CHAR

G, GW GRAPHIC

E, D, I, J, K, L, P, EZ, DZ, IZ, JZ, KZ, LZ, PZ, DZC, Dx,
Ix, Jx, Kx, Lx, Px

NUMERIC

TDXx DATE

TTXx TIME

TSI TIMEST

U, V UNKNOWN

None of the above (invalid) UNKNOWN

Importing and Exporting QMF Objects

110 QMF: Developing QMF Applications

Variation panels
When you export a form, QMF only exports those variation panels with
values that have been changed from the default. Therefore, the total number
of variations in the external form can be less than that shown in the variation
count indicator on the panel. QMF can alter the individual variation numbers
to put the variations back into a continuous sequence.

Translated forms
When you export a form from a non-English session, you can either export
the form in the current session language or in English. Because of this, the
national language identifier in the H record might not reflect the language of
the session from which you exported the form.

Report objects

When QMF displays a report, you see the result of interaction between the
form and data objects in temporary storage. A report object does not exist in
temporary storage. When you export a report, QMF is really exporting the
interaction of a form and a data object. A report cannot be saved in the
database, and an exported report cannot be imported back to QMF. However,
you can use exported reports to:
v Extract data from the report and use it in the application
v Modify the appearance of the report for printing or redisplay by the

application

Example of exporting a report
This example illustrates a report with a level 1 break. Figure 21 on page 112
shows the report to be exported. For an example of an across report, see 117.

For a list of the field numbers, see “Table and field numbers for the report
object” on page 238.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 111

Figure 22 on page 113 shows the format of the exported report shown in
Figure 21.

REPORT LINE 1 POS 1 79

J & H SUPPLY COMPANY
AVERAGE SALARIES (DEPTS 10, 15, 20)

REPORT 17

AVERAGE
DEPT JOB SALARY

------ ----- ----------
10 MGR 20865.86

* 20865.86

15 CLERK 12383.35
MGR 20659.80
SALES 16502.83

* 15482.33

20 CLERK 13878.68
MGR 18357.50
SALES 18171.25

* 16071.53

==========
17473.24

COMPANY NAME
REPORT 17

Figure 21. A tabular QMF report

Importing and Exporting QMF Objects

112 QMF: Developing QMF Applications

When exporting a report, QMF writes the full text of the formatted report
with additional information to interpret the contents of the report.

The header record is the first record of the exported file. It is followed by the
appropriate V, T, and R records. If the report is an across-style report, it has
another group of V, T, and R records that follows the first group.

In addition to H, V, T, R, and E records, exported reports also require two
additional types of records:
v Report line records (L)
v Data continuation records (C)

These two records follow the last group of V, T, and R records.

H QMF 11 R 01 E V W E R 02 03 98/10/14 11:24
V 1001 006 PERIOD
V 1002 003 016
T 1010 003 006 1013 005 1014 006 1015 006 1016 006 1017 006 1012 008
R L 000001 000003 000008 000001 BREAK1
R C 000009 000011 000015 000001 GROUP
R L2 000016 000018 000027 000001 AVERAGE
L 110 10100000 J & H SUPPLY COMPANY
L 110 10100000 AVERAGE SALARIES (DEPTS 10, 15, 20)
L 110 10100000 REPORT 17
L 110 10000000
L 110 10000000
L 170 10000000 AVERAGE
L 170 10000000 DEPT JOB SALARY
L 170 10010000 ------ ----- ----------
L 181 11000000 10 MGR 20865.86
L 151 10010000 ----------
L 151 11100000 * 20865.86
L 151 10000000
L 181 11000000 15 CLERK 12383.35
L 181 11000000 MGR 20659.80
L 181 11000000 SALES 16502.83
L 151 10010000 ----------
L 151 11100000 * 15482.33
L 151 10000000
L 181 11000000 20 CLERK 13878.67
L 181 11000000 MGR 18357.50
L 181 11000000 SALES 18171.25
L 151 10010000 ----------
L 151 11100000 * 16071.52
L 151 10000000
L 190 10010000 ==========
L 190 11000000 17473.24
L 120 10000000
L 120 10000000
L 120 10100000 COMPANY NAME
L 120 10100000 REPORT 17
E

Figure 22. Format of the exported sample report

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 113

If you want to use only the formatted data of the report in your application,
you can have QMF send print output to a file, data set, or CICS data queue.
This file, data set, or CICS data queue contains only the formatted data
without any layout information.

Report line records (L)
Each formatted line in a report is described by an L record. There is one L
record for each line in the report. Like other variable format records (V, T, R),
L records consist of a control area followed by a record data area. The format
of the control area is similar to the other records; the record data area is
composed of a fixed area that precedes the formatted report line itself. The
fixed area provides information about the report line that follows it.

The contents of an L record are as follows:

Control area for L records:

Byte position
Description

01 Value record identifier (L)

02 Continuation indicator. Indicates whether the current record is
continued to a data continuation record (see “Data continuation
records (C)” on page 116):
v C for continued
v D for continued with DBCS delimiters SO and SI inserted at the end

of the current record and the beginning of the data portion of the
next record

v Blank if not continued

(See notes 1 and 2 on page 115 following the descriptions.)

Record data area for L records (fixed area):

Byte position
Description

01 Blank

02-04 Report part indicator 110 = Page heading 120 = Page footing 13n =
Break heading (n is break number, 1-6) 15n = Break footing (n is break
number, 1-6) 170 = Column heading 171 = Detail heading 180 = Detail
line 181 = Group summary line 190 = Final footing

Importing and Exporting QMF Objects

114 QMF: Developing QMF Applications

05 Blank

06-13 Line type attributes. Byte 06 is always 1. Each byte in bytes 7 through
13 indicates the presence or absence of the corresponding line type
attribute in the formatted report line (1 = attribute present, 0 =
attribute absent).

Byte position
Description

06 1

07 Data

08 Text

09 Separator

10 Column wrap. See note 3.

11 Line wrap. See note 3.

12 Second data line (across reports only). See note 4.

13 Reserved

14 Blank

id=repline.Record data area for L records (report line):

Byte position
Description

01-end
The actual formatted report line

Example of an L record:
L 151 11100000 DEPARTMENT TOTALS 93,659.45

(Break1 footing line containing text and data)

Notes:

1. A C record immediately follows an L record marked with a continuation
character in byte 2 of the control area.

2. When D is specified for the continuation indicator in the control area, it
means that the current record is too long to fit into a single physical
record, and that, in the process of splitting up the record, SO (shift out) and
SI (shift in) characters were added to the current and next records to
preserve the integrity of the DBCS data being continued.

3. Attributes for column wrap (byte 10) and line wrap (byte 11) are used to
indicate the continuation of a single logical report line to multiple physical

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 115

report lines. The presence of either attribute in a given L format record
means that the column data or wrapped line is continued on a following L
format record.

4. Across reports containing percent or cumulative sum columns can contain
two data lines for each group (also break and final) summary. The first
summary data line contains the cumulative percent or cumulative sum
values of the column as computed across each unique across value. The
second summary data line contains the cumulative percent or cumulative
sum values of the column as computed down each group (in the report or
within a control break). The second data line (byte 12) line type identifies
the second data line in exported reports of this nature.

Data continuation records (C)
A C record is used to continue a value or set of values across more than one
record. It immediately follows the record being continued. The format of a C
record corresponds to the format of the original record being continued. QMF
uses C records to continue L records only. The C record contains the
following:

Control area for C records:

Byte position
Description

01 Value record identifier (C)

02 Continuation indicator. Indicates whether the current record is
continued to another C record:
v C for continued
v D for continued with DBCS delimiters SO and SI inserted at the end

of the current record and the beginning of the data portion of the
next record

v Blank if not continued

(See Notes 1 on page 115 and 2 on page 115.)

Record data area for C records

The byte positions in the following list are offset from the end of the control
area, the length of which is indicated in the header record.

Byte position
Description

01 Blank

02-end
Value or set of values being continued

Importing and Exporting QMF Objects

116 QMF: Developing QMF Applications

Examples of C records
A report line continuation, in which a single report line value is split in
the middle of the text, but is not continued to another continuation
record:
C ARS ---> <---- TOTAL --->

A report line continuation, in which a single report line value is split in
the middle of the text and the record is continued to another C record:
CC ERK ---> <---- MGR ---> <---- SAL

Example of Exporting an across report

Figure 23 illustrates an exported across-style report.

Figure 24 on page 118 shows the resulting encoded format from Figure 23.

REPORT LINE 1 POS 1 79

J & H SUPPLY COMPANY
DEPT AVERAGE SALARIES

REPORT 18 (ACROSS REPORT)

<---------------- JOB ----------------->
<- CLERK --> <-- MGR ---> <- SALES --> <- TOTAL -->

AVERAGE AVERAGE AVERAGE AVERAGE
DEPT SALARY SALARY SALARY SALARY

------ ---------- ---------- ---------- ----------
10 20865.86 20865.86
15 12383.35 20659.80 16502.83 15482.33
20 13878.68 18357.50 18171.25 16071.53
38 12482.25 17506.75 17407.15 15457.11

========== ========== ========== ==========
12914.76 19998.21 17372.10 16880.26

COMPANY NAME
REPORT 18
PAGE 1

Figure 23. Sample across report. This report uses QMF across report functions.

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 117

HTML reports
When you export a report for HTML, QMF places the necessary HTML tags
before and after the body of your report so that you can place it on a web
server and displayit in an HTML 3.0 compliant web browser. Figure 25 on
page 119 illustrates the HTML coding that QMF places around the report.

H QMF 11 R 01 E V W E R 02 03 98/10/14 16:20

V 1001 006 PERIOD
V 1002 003 016
T 1010 002 006 1013 005 1014 006 1015 006 1016 006 1017 006 1012 008
R L 000001 000003 000008 000001 GROUP
R L2 000003 000005 000014 000001 AVERAGE
V 2001 005 C
V 2002 003 001
V 2003 003 YES
T 2010 004 003 2012 006 2013 006 2014 006
R 000014 000018 000009
R 000029 000031 000023
R 000042 000046 000037
R 000056 000060 000051
L 110 10100000 J & H SUPPLY COMPANY
L 110 10100000 DEPT AVERAGE SALARIES
L 110 10100000 REPORT 18 (ACROSS REPORT)
L 110 10000000
L 110 10000000
L 170 10000000 <---------------- JOB ----------------->
L 170 11000000 <- CLERK --> <-- MGR ---> <- SALES --> <- TOTAL -->
L 170 10000000 AVERAGE AVERAGE AVERAGE AVERAGE
L 170 10000000 DEPT SALARY SALARY SALARY SALARY
L 170 10010000 ------ ---------- ---------- ---------- ----------
L 181 11000000 10 20865.86 20865.86
L 181 11000000 15 12383.35 20659.80 16502.83 15482.33
L 181 11000000 20 13878.68 18357.50 18171.25 16071.53
L 181 11000000 38 12482.25 17506.75 17407.15 15457.11
L 190 10010000 ========== ========== ========== ==========
L 190 11000000 12914.76 19998.21 17372.10 16880.26
L 120 10000000
L 120 10000000
L 120 10100000 COMPANY NAME
L 120 10100000 REPORT 18
L 120 10100000 PAGE 1
E

Figure 24. Format of the exported across-style report

Importing and Exporting QMF Objects

118 QMF: Developing QMF Applications

QBE queries

QBE query objects are exported using a format internal to QMF. This format
cannot be altered in any way.

<HTML>
<HEAD>
<TITLE>
Report
</TITLE>
</HEAD>
<BODY>
<PRE>

J & H SUPPLY COMPANY
AVERAGE SALARY (DEPTS 10, 15, 20)

REPORT 17

AVERAGE
DEPT JOB SALARY
---- ----- ---------
10 MGR 20865.86

* 20865.86

15 CLERK 12383.53
MGR 20659.80
SALES 16052.83

* 15482.33

20 CLERK 13878.67
MGR 18357.50
SALES 18171.25

* 16071.52

=========
17473.52

COMPANY NAME
REPORT 17

</PRE>
</BODY>
</HTML>

Figure 25. Sample HTML Report Coding

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 119

Specifications for externalized QMF objects

Table 14 contains specifications for TSO and CMS IMPORT and EXPORT files.

For CICS, record sizes are the same as those indicated in Table 14; however,
they are not enforced. For example, you could import an SQL query from a
temporary storage queue with a record size of 32k and QMF would truncate it
to 79 bytes.

Record format is not a factor for CICS temporary storage or transient data
queues. A temporary storage queues holds records without regard to their
format. A transient data queue is defined to a destination control table (DCT)
and ignores the record format.

Queue names are user generated and have no default prefix or suffix. CICS TS
queue names are 8 bytes. TD queue names are 4 bytes.

Table 14. File and data set attributes

Object Reord Size Record format (CMS/TSO)

Data or table
(QMF
format)

Maximum size: 7,000 bytes Records must be fixed length

Data or table
(IXF format)

Maximum size: 32,756 (see note 2)
The minimum LRECL that QMF
accepts for an IXF file, data set, or
CICS data queue during import is
49 bytes.

Records must be variable length

Prompted
query

Maximum: 7,290 bytes

Minimum: 266 bytes on EXPORT;
41 bytes on IMPORT.

Records must be variable length
on EXPORT; can be either fixed or
variable on IMPORT.

SQL query Must be 79 bytes on EXPORT;
must be less than 256 bytes on
IMPORT, but is truncated to 79
bytes.

Records must be fixed length on
EXPORT; can be either fixed or
variable on IMPORT.

QBE query Must be 1,024 bytes (see note 3). Records must be variable length.

Form Maximum: 7,290 bytes

Minimum: 161 bytes on EXPORT;
23 bytes on IMPORT.

Records must be variable length
on EXPORT; can be either fixed or
variable on IMPORT.

Proc Must be 79 bytes on EXPORT; can
be any size on IMPORT, but is
truncated to 79 bytes.

Records must be fixed length on
EXPORT; can be either fixed or
variable on IMPORT.

Importing and Exporting QMF Objects

120 QMF: Developing QMF Applications

Table 14. File and data set attributes (continued)

Object Reord Size Record format (CMS/TSO)

Report Maximum: 7,290 bytes

Minimum: 65 bytes

Records must be variable length.

HTML
Report

Maximum: 32,000 bytes Records must be variable length.

Notes:

1. You must specify a name for your file, data set, or CICS data queuein the
EXPORT or IMPORT command. For more information about names, see
QMF Reference.

2. The minimum LRECL for an exported form that includes defined columns
is 161 bytes. This minimum accommodates Version 3.2 enhancements to
QMF forms, including column heading alignment, column data alignment,
column definition expression, and information about passing nulls. If the
form does not contain column definition information, the minimum
LRECL for CMS is 113 bytes.

3. An empty QBE query is 828 bytes.
4. Record size is normally the length of a row of data in the table being

exported (including space for null indicators and DBCS delimiters), plus
the length of the IXF D-type record count field (5 bytes). If the record size
derived from the row length is less than the length of the longest IXF
header record (81 bytes), then the record size is set to 81 bytes.

Rules and considerations when using CICS queues

Rules:

1. In CICS, both IMPORT and EXPORT require that you specify the
QUEUETYPE option. There is no default.

2. When importing an object from a transient data (TD) queue in CICS, you
must specify the correct object type; the queue is emptied once QMF
retrieves its contents. For example, if you specify “Form” when the object
type in the transient data queue is a procedure, QMF issues an error
message. However, you cannot successfully issue the IMPORT command
again (even with the corrected object type) using the same queue, because
that queue is now empty.

3. In CICS, the transient data or temporary storage (TS) queue must contain
a single, completed QMF object before you issue the IMPORT command.

4. If you export to a transient data queue, the queue must be open, enabled
and empty before you issue the EXPORT command. For information about
CICS transient data queues, see CICS for VSE/ESA Application Programming
Guide

Importing and Exporting QMF Objects

Chapter 9. Importing and Exporting QMF Objects 121

Considerations:

QMF handles CICS transient data queues differently than temporary storage
queues.
v Transient data queues: QMF imports the entire transient data queue prior

to displaying the object on the screen. This means that the contents of the
entire queue must fit into your storage or spill area. It also means that, if
the object to be displayed is large, there may be a delay before QMF
displays the object on the screen.
A CICS intrapartition transient data queue can hold up to 32K rows of data;
an extrapartition transient data queue can be as large as it needs to be to
hold the object.

v Temporary storage queues: QMF reads approximately 100 rows of
temporary storage before displaying them to the user. A temporary storage
queue can hold up to 32K rows of data.

v Adding a QMF object to the queue: QMF uses the SUSPEND parameter on
the IMPORT and EXPORT commands to let CICS regulate when the
command is run.
The SUSPEND parameter on the IMPORT and EXPORT commands
determines the action to be taken if a queue is busy. When the SUSPEND
parameter is set to YES, QMF issues a CICS ENQ (enqueue) for the CICS
data queue name. This tells CICS to wait until the queue is available before
writing the QMF object to the queue, thus ensuring that the QMF
transaction does not interfere with any other jobs being handled by the
queue.
When the SUSPEND parameter is set to NO, the EXPORT command is
canceled and a message is returned. The default value of SUSPEND is NO.
That QMF issues an automatic ENQ is reflected in the SUSPEND option of
the EXPORT and IMPORT commands.

Importing and Exporting QMF Objects

122 QMF: Developing QMF Applications

Chapter 10. Debugging Your QMF Applications

In addition to error-handling and application support commands, QMF
provides debugging facilities for your programs. The techniques described in
this chapter apply to callable interface applications.

For information on ISPF debugging techniques, see Chapter 6, “Writing QMF
Applications that Use ISPF” on page 39. You can use the REXX trace facility
through the TRACE statement. For more details on this statement, see REXX
Reference.

Debugging your callable interface applications

QMF provides two trace options, L and A, and several different levels of
tracing for debugging your applications.

Using the L-option for tracing
The L-option lets you tell QMF to write messages and commands to an
external QMF trace data output that you allocate before you begin your QMF
session. There are two L-options you can choose:

L1 Every QMF message is written to the QMF trace data output.

L2 Every QMF message and command is written to QMF trace data
output. For example, you can use L2 to trace and debug
Q.SYSTEM_INI system initialization procedure commands and
messages.

You can set the L-option in one of two ways:
1. Issue the DISPLAY PROFILE command, and when the PROFILE object

appears, change the TRACE option to either L1 or L2.
2. Issue the command:

SET PROFILE (TRACE=x

where x is either L1 or L2.

If you allocate the trace data output yourself, you can arrange for the trace
information to be printed or subsequently viewed at a terminal. In either case,
you can then examine the data after the QMF session. See “Allocating the
QMF trace data output” on page 125 for details on allocation, or consult your
information center.

© Copyright IBM Corp. 1983, 2002 123

Using the A-option for tracing
The A-option allows you to specify a level of tracing for QMF application
support services.

The A-option setting can be A0, A1, or A2. A0 is the default and is interpreted
as the signal for no A-tracing at all. A1 and A2 can then call for increasingly
detailed results. This is the pattern used for the other QMF trace options.

You specify the A-option in the same way you specify the L-option: through a
QMF SET command, or by entering it on the screen after you execute the
DISPLAY PROFILE command. For example, you can enter the following just
before you invoke the application you are debugging:
SET PROFILE (TRACE=L2A1)

Then, when you begin your application, both L2 and A1 tracing are in effect.

To determine the current A-option setting, look at the variable
DSQAO_APPL_TRACE. Its value is 0, 1, or 2, respectively, for the settings A0,
A1, or A2. You can use the value of DSQAO_APPL_TRACE to select the kind
of tracing you want in your application, as in Figure 26.

Nested DO-groups like the ones in Figure 26 can appear throughout an
application. Where they appear, they take “snapshot” dumps of certain data
areas, print the values of certain critical variables, load a debugging module,
or perform any other diagnostic procedure that can help you debug the
application. Precisely what is done depends on the setting in effect for the
A-option while the application is running.

/* REXX program to set tracing */
call dsqcix "GET GLOBAL(A_TRACE=DSQAO_APPL_TRACE"
if a_trace > 0 then

do
/* trace code for both A1 and A2 */

...
if a_trace = 2 then

do
/* trace code for just A2 */

...
end

end

Figure 26. Sample REXX program to set tracing

Debugging Your QMF Applications

124 QMF: Developing QMF Applications

A good place for A-option code is in a large application. Consider leaving this
code in the application after you finish your debugging. Doing this does not
produce A-trace output if you run the application with an A0 setting. If you
modify the application, and in the process introduce a bug, you can run this
code again.

Turning the tracing off
To turn the tracing off after you test the application, issue the following
command:
SET PROFILE (TRACE=NONE

This discontinues tracing for the rest of your QMF session, but does not affect
your permanent QMF profile.

Allocating the QMF trace data output
You must allocate the QMF trace data output before you invoke QMF if tracing
is to be used. It is possible that the output was allocated automatically
through your startup procedure. Even so, you might want to reallocate the
output if the original allocation does not meet your needs.

For examples of how to allocate QMF trace data output for CMS or TSO, see
the assemble or compile and execution coding example in the chapter
discussing the appropriate language:

Assembler
Assembler language interface, beginning on page 127.

C Language
C Language Interface, beginning on page 150.

COBOL
COBOL language interface, beginning on page 167.

FORTRAN
FORTRAN language interface, beginning on page 184.

PL/I PL/I language interface, beginning on page 200.

REXX REXX language interface, beginning on page 216.

The commands in the examples allocate a sequential trace data output that
you can examine at a terminal after your QMF session is over. The output
consists of fixed length, 80-character records. The trace information is
formatted to 80 characters per line. You can view an entire line of output on a
terminal screen.

For CICS, you can use program parameters DSQSDBQT and DSQSDBQN to
specify where QMF puts your trace data. Use caution when using CICS

Debugging Your QMF Applications

Chapter 10. Debugging Your QMF Applications 125

temporary storage because QMF can produce a large amount of trace data.
CICS temporary storage is recommended for message or small application
trace data only.

Using tracing with the QMF MESSAGE command
You can use the QMF MESSAGE command to do more than display a
message when an application ends. You can also use it to record messages in
the QMF trace data output. To do this, run the application with the L-Option
for TRACE set to L1 or L2. (For information on how to do this, refer to
“Using the L-option for tracing” on page 123.) Every message processed
through the MESSAGE command is then recorded, along with other QMF
messages (and commands if L2 is used), in the QMF trace data output.

By placing MESSAGE commands in strategic places in your program, you can
log useful information in the QMF trace file. After the QMF session, you can
examine it, either on the terminal or in printed output. For more information
about the QMF trace data output, see “Allocating the QMF trace data output”
on page 125.

Example

An application issues the commands shown in the following example:
call dsqcix "SET PROFILE (TRACE=L2"...
call dsqcix "MESSAGE (TEXT=’QUERYA COMPLETED SUCCESSFULLY’"...
call dsqcix "MESSAGE (TEXT=’EXECB ENTERED WITH VALUE OF 7’"...

Records containing the messages ‘QUERYA COMPLETED
SUCCESSFULLY’ and ‘EXECB ENTERED WITH VALUE OF 7’ are
written into the QMF trace data output.

Because QMF messages can change from one release to the next, you should
not use the QMF trace data output as input to an application.

Debugging errors on the START and other QMF commands

Depending on the level of your DSQCOMM, you might have message text in
your DSQCOMM. If your START command (or any QMF command) fails, this
message text is invaluable for debugging. If you are working with the current
level of DSQCOMM, the message text is available to you. See QMF Messages
and Codes for information about all QMF error messages.

Debugging Your QMF Applications

126 QMF: Developing QMF Applications

Appendix A. Sample Code for Callable Interface Languages

This appendix contains sample code for each of the QMF callable interface
languages:

Assembler
“Assembler language interface”

C Language
“C Language Interface” on page 150

COBOL
“COBOL language interface” on page 167

FORTRAN
“FORTRAN language interface” on page 184

PL/I “PL/I language interface” on page 200

REXX “REXX language interface” on page 216

This appendix contains a sample program for each language supported by
QMF. Each sample program:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample programs, as
written, use these objects.

This appendix also shows how to assemble or compile, link-edit, and run the
programs using the callable interface. QMF does not ship the REXX EXECs,
JCL, or CLISTs in these examples, but you can copy them and alter them to
suit your installation.

Assembler language interface

If you use assembler language, you must use Assembler H or High Level
Assembler (HLASM) with the callable interface. QMF provides one function
call, DSQCIA, for the assembler language.

For CICS/VSE, you must use HLASM to construct 31-bit addressing.

© Copyright IBM Corp. 1983, 2002 127

Interface communications area mapping for Assembler (DSQCOMMA)
DSQCOMMA provides DSQCOMM mapping for assembler language and is
shipped with the product. Table 15 shows the values for DSQCOMMA.

Table 15. Interface communications area for DSQCOMMA

Structure Name Data Type Description

DSQ_RETURN_CODE DS F Indicates the status of a QMF command
after it runs. Its values are:

DSQ_SUCCESS
Successful execution of the
request.

DSQ_WARNING
Normal completion with
warnings.

DSQ_FAILURE
Command did not execute
correctly.

DSQ_SEVERE
Severe error; QMF session
terminated.

DSQ_INSTANCE_ID DS F Identifier established by QMF during
execution of the START command

DSQ_COMM_LEVEL DS CL12 Identifies the level of the DSQCOMM.
You should set this to the value of
DSQ_CURRENT_COMM_LEVEL before
issuing the QMF START command.

DSQ_PRODUCT DS CL2 Identifies the IBM query product in use.

DSQ_PRODUCT_RELEASE DS CL2 Identifies the release level of the query
product in use.

DSQ_RESERVE1 DS XL28 Reserved for future use

DSQ_MESSAGE_ID DS CL8 Completion message ID

DSQ_Q_MESSAGE_ID DS CL8 Query message ID

DSQ_START_PARM_ERROR DS CL8 Parameter in error when START failed
due to a parameter error

DSQ_CANCEL_IND DS C Contains one of two values, depending if
the user canceled while a QMF command
was running:

v DSQ_CANCEL_YES

v DSQ_CANCEL_NO

DSQ_RESERVE2 DS XL23 Reserved for future use

DSQ_RESERVE3 DS XL156 Reserved for future use

Callable Interface Samples

128 QMF: Developing QMF Applications

Table 15. Interface communications area for DSQCOMMA (continued)

Structure Name Data Type Description

DSQ_MESSAGE_TEXT DS CL128 Completion message text

DSQ_Q_MESSAGE_TEXT DS CL128 Query message text

Function calls for Assembler language
The function call for assembler language has two formats: DSQCIA and
DSQCIA extended syntax.

DSQCIA
This call is for QMF commands that do not require access to application
program variables. Use this call for most QMF commands.

CALL DSQCIA,(DSQCOMM,CMDLTH,CMDSTR),VL

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string, CMDSTR; a FULLWORD parameter

CMDSTR
QMF command to execute; an uppercase character string of the length
specified by CMDLTH

VL is the assembler VARIABLE LIST statement.

DSQCIA, extended syntax
This extended syntax format of the DSQCIA function is for the three QMF
commands that require access to application program variables: START and
the extended formats of GET GLOBAL and SET GLOBAL.

CALL DSQCIA,(DSQCOMM,CMDLTH,CMDSTR,
PNUM,KLTH,KWORD,VLTH,VALUE,VTYPE),VL

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string, CMDSTR; a FULLWORD parameter

CMDSTR
QMF command to execute; an uppercase character string of the length
specified by CMDLTH

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 129

PNUM
Number of command keywords; a FULLWORD parameter

KLTH
Length of each specified keyword; a FULLWORD parameter or array of
FULLWORD parameters

KWORD
QMF keyword or keywords; a character or structure of characters whose
lengths are the same as specified by KLTH

VLTH
Length of each value associated with the keyword; a FULLWORD
parameter or array of FULLWORD parameters

VALUE
Value associated with each keyword. Its type is specified in the VTYPE
parameter, and can be a character, structure of characters, FULLWORD
parameter, or array of FULLWORD parameters.

VTYPE
QMF data type of the value string VALUE. This type has one of two
values, which are provided in the communications macro, DSQCOMMA:
v DSQ_VARIABLE_CHAR for character values. If VTYPE is

DSQ_VARIABLE_CHAR, then VALUE is not validated.
v DSQ_VARIABLE_FINT for integer values. If VTYPE is

DSQ_VARIABLE_FINT, then VALUE is validated, and VALUE must be
an integer.

All values specified in the VALUE field must have the data type specified
in VTYPE.

VL is the assembler VARIABLE LIST statement.

Migration information
The DSQCOMM changed between Version 2 Release 4 and Version 3.2.
v If you want to continue using the old DSQCOMM, you do not have to

reassemble your program.
v If you want to use Version 3.2 of DSQCIA, you must again link-edit your

Version 2 Release 4 program.

The Version 3.2 DSQCOMM provides message text that is especially useful if
there is an error in your START command. If you want to use the new
DSQCOMM, you need to reassemble your program and initialize
DSQ_COMM_LEVEL (in DSQCOMM) to DSQ_CURRENT_COMM_LEVEL. If
you do not set this value, QMF treats your DSQCOMM as a Version 2 Release
4 level.

Callable Interface Samples

130 QMF: Developing QMF Applications

The Version 3.2 level of DSQCOMM is 512 bytes long, which is an increase
from the 256 bytes available in Version 2 Release 4. Any instructions that are
used to move or initialize this structure that had a 256-byte limit (such as
MVC) must be changed to use instructions that work on a larger data area.

Note to CICS/MVS users

The DSQCIA changed between Version 3 Release 1 Modification 1 and
Version 3 Release 2. The interface between the QMF-supplied function
call and the main QMF program changed from a CALL interface to an
EXEC CICS LINK interface. The new interface provides better isolation
from the user program and the QMF product. Because the interface has
changed, you need to link-edit your programs that used the callable
interface again.

Assembler programming examples
You can look at the sample source code listings here or you can access them
online.
v For MVS, the sample program is a member of the library

QMF720.SDSQSAPE.
v For VM, the sample program is on the production disk.
v For VSE, the sample program is in the QMF sublibrary and is named

DSQABFAC.Z.

The sample programs for the assembler callable interface perform the
following functions:
v Start QMF
v Set three global variables
v Run a query called Q1
v Print the resulting report using form F1
v End the QMF session

QMF does not supply query Q1 or form F1, but the sample programs use
these objects.

This section also shows how to assemble, link-edit, and run an assembler
program using the callable interface. QMF does not ship the REXX EXEC, JCL,
or CLIST in these examples, but you can copy them from here, altering them
to suit your installation.

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 131

Sample Assembler program for CICS/MVS and CICS/VSE
The program DSQABFAC is shipped with QMF for CICS.

TITLE ’Sample HLASM Query Callable Interface’ 00001000
*** 00002000
* * 00003000
* Sample Program: DSQABFAC * 00004000
* Assembler Version of the SAA Query Callable Interface * 00005000
* * 00006000
*** 00007000
DSQABFAC DFHEIENT CODEREG=(12),DATAREG=(13),EIBREG=(11) 00008000

SPACE 1 00009000
*** 00010000
* Start a query interface session * 00011000
*** 00012000

LA R4,CICOMM ESTABLISH ACCESS TO DSQCOMM 00013000
USING DSQCOMM,R4 00014000
SPACE 1 00015000
MVC DSQ_COMM_LEVEL,DSQ_CURRENT_COMM_LEVEL 00016000
ST R4,QMFP1 Address of DSQCOMMA 00017000
LA R1,STARTQIL Address of START command length 00018000
ST R1,QMFP2 00019000
LA R1,STARTQI Address of START command 00020000
ST R1,QMFP3 00021000
LA R1,1 One Start command parameter 00022000
ST R1,NUMPARMS 00023000
LA R1,NUMPARMS Address of number of parameters 00024000
ST R1,QMFP4 00025000
LA R1,STARTKYL Address of keyword lengths 00026000
ST R1,QMFP5 00027000
LA R1,STARTKY Address of keywords 00028000
ST R1,QMFP6 00029000
LA R1,STARTVL Address of value lengths 00030000
ST R1,QMFP7 00031000
LA R1,STARTV Address of values 00032000
ST R1,QMFP8 00033000
LA R1,DSQ_VARIABLE_CHAR Address of value data type 00034000
ST R1,QMFP9 00035000
OI QMFP9,X’80’ Set end of parameter list 00036000
LA R1,QMFPLIST Address of parameter list 00037000
CALL DSQCIA 00038000
SPACE 1 00039000

Figure 27. DSQABFAC, sample HLASM program for CICS/MVS and CICS/VSE (Part 1 of 5)

Callable Interface Samples

132 QMF: Developing QMF Applications

*** 00040000
* Set numeric values into query using SET command * 00041000
*** 00042000

SPACE 1 00043000
LA R1,20 Set values for SET GLOBAL command 00044000
ST R1,VVAL1 00045000
LA R1,40 00046000
ST R1,VVAL2 00047000
LA R1,84 00048000
ST R1,VVAL3 00049000
LA R1,SETGL Addr of SET GLOBAL command length 00050000
ST R1,QMFP2 00051000
LA R1,SETG Address of SET GLOBAL command 00052000
ST R1,QMFP3 00053000
LA R1,3 Three SET GLOBAL variables 00054000
ST R1,NUMPARMS 00055000
LA R1,NUMPARMS Address of number of parameters 00056000
ST R1,QMFP4 00057000
LA R1,VNAME1L Address of variable name lengths 00058000
ST R1,QMFP5 00059000
LA R1,VNAME1 Address of variable names 00060000
ST R1,QMFP6 00061000
LA R1,VVAL1L Address of value lengths 00062000
ST R1,QMFP7 00063000
LA R1,VVAL1 Address of values 00064000
ST R1,QMFP8 00065000
LA R1,DSQ_VARIABLE_FINT Address of value data type 00066000
ST R1,QMFP9 00067000
OI QMFP9,X’80’ Set end of parameter list 00068000
LA R1,QMFPLIST Address of parameter list 00069000
CALL DSQCIA 00070000
SPACE 1 00071000

*** 00072000
* Run a query * 00073000
*** 00074000

Figure 27. DSQABFAC, sample HLASM program for CICS/MVS and CICS/VSE (Part 2 of 5)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 133

LA R1,QUERYL Addr of RUN QUERY command length 00075000
ST R1,QMFP2 00076000
LA R1,QUERY Address of RUN QUERY command 00077000
ST R1,QMFP3 00078000
OI QMFP3,X’80’ Set end of parameter list 00079000
LA R1,QMFPLIST Address of parameter list 00080000
CALL DSQCIA 00081000
SPACE 1 00082000

*** 00083000
* Print the result of the query * 00084000
*** 00085000

LA R1,REPTL Addr of PRINT Report command lth 00086000
ST R1,QMFP2 00087000
LA R1,REPT Address of PRINT Report command 00088000
ST R1,QMFP3 00089000
OI QMFP3,X’80’ Set end of parameter list 00090000
LA R1,QMFPLIST Address of parameter list 00091000
CALL DSQCIA 00092000
SPACE 1 00093000

*** 00094000
* End the query interface session * 00095000
*** 00096000

LA R1,ENDQIL Address of EXIT command length 00097000
ST R1,QMFP2 00098000
LA R1,ENDQI Address of EXIT command 00099000
ST R1,QMFP3 00100000
OI QMFP3,X’80’ Set end of parameter list 00101000
LA R1,QMFPLIST Address of parameter list 00102000
CALL DSQCIA 00103000
SPACE 1 00104000

*** 00105000
* Return * 00106000
*** 00107000

SPACE 1 00108000

Figure 27. DSQABFAC, sample HLASM program for CICS/MVS and CICS/VSE (Part 3 of 5)

Callable Interface Samples

134 QMF: Developing QMF Applications

XR R15,R15 ZERO RETURN CODE 00109000
DFHEIRET RCREG=15 00110000

*** 00111000
* Data Areas * 00112000
*** 00113000

SPACE 1 00114000
* Query Interface commands 00115000

SPACE 1 00116000
STARTQI DC C’START’ START FUNCTION 00117000
SETG DC C’SET GLOBAL’ SET GLOBAL FUNCTION 00118000
QUERY DC C’RUN QUERY Q1’ RUN QUERY 00119000
REPT DC C’PRINT REPORT (FORM=F1)’ PRINT REPORT 00120000
ENDQI DC C’EXIT’ END INTERFACE 00121000

SPACE 1 00122000
DS 0F 00123000

STARTQIL DC AL4(L’STARTQI) LENGTH OF START FUNCTION 00124000
SETGL DC AL4(L’SETG) LENGTH OF SET GLOBAL FUNCTION 00125000
QUERYL DC AL4(L’QUERY) LENGTH OF RUN QUERY COMMAND 00126000
REPTL DC AL4(L’REPT) LENGTH OF PRINT REPORT COMMAND 00127000
ENDQIL DC AL4(L’ENDQI) LENGTH OF END INTERFACE COMMAND 00128000

SPACE 1 00129000
* START command keyword 00130000

SPACE 1 00131000
STARTKY DC C’DSQSMODE’ 00132000
STARTV DC C’INTERACTIVE’ 00133000

DS 0F 00134000
STARTKYL DC AL4(L’STARTKY) 00135000
STARTVL DC AL4(L’STARTV) 00136000

SPACE 1 00137000
* SET GLOBAL command variable names 00138000

SPACE 1 00139000
VNAME1 DC C’MYVAR01’ 00140000
VNAME2 DC C’SHORT’ 00141000
VNAME3 DC C’MYVAR03’ 00142000

DS 0F 00143000
VNAME1L DC AL4(L’VNAME1) 00144000
VNAME2L DC AL4(L’VNAME2) 00145000
VNAME3L DC AL4(L’VNAME3) 00146000

SPACE 1 00147000
* SET GLOBAL command values 00148000

SPACE 1 00149000
VVAL1L DC AL4(L’VVAL1) 00150000
VVAL2L DC AL4(L’VVAL2) 00151000
VVAL3L DC AL4(L’VVAL3) 00152000
* Callable interface communications definition 00153000

DSQCOMMA 00154000

Figure 27. DSQABFAC, sample HLASM program for CICS/MVS and CICS/VSE (Part 4 of 5)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 135

Sample Assembler program for TSO and CMS
For TSO and CMS, QMF ships the following program with the product. It is
named DSQABFA.

* Equates for registers 0-15 00155000
R0 EQU 00 00156000
R1 EQU 01 00157000
R2 EQU 02 00158000
R3 EQU 03 00159000
R4 EQU 04 00160000
R5 EQU 05 00161000
R6 EQU 06 00162000
R7 EQU 07 00163000
R8 EQU 08 00164000
R9 EQU 09 00165000
R10 EQU 10 00166000
R11 EQU 11 00167000
R12 EQU 12 00168000
R13 EQU 13 00169000
R14 EQU 14 00170000
R15 EQU 15 00171000
* Local variables located in CICS working storage 00172000
DFHEISTG DSECT 00173000

ORG DFHEIUSR 00174000
NUMPARMS DS F NUMBER OF KEYWORDS 00175000
* QMF SET GLOBAL command values 00176000
VVAL1 DS F 00177000
VVAL2 DS F 00178000
VVAL3 DS F 00179000
* QMF Callable interface parameter list 00180000
QMFPLIST DS 0D 00181000
QMFP1 DS F 00182000
QMFP2 DS F 00183000
QMFP3 DS F 00184000
QMFP4 DS F 00185000
QMFP5 DS F 00186000
QMFP6 DS F 00187000
QMFP7 DS F 00188000
QMFP8 DS F 00189000
QMFP9 DS F 00190000
* Callable interface communications area 00191000
CICOMM DS CL(DSQCOMM_LEN) 00192000

CSECT 00193000
SPACE 1 00194000
END DSQABFAC 00195000

Figure 27. DSQABFAC, sample HLASM program for CICS/MVS and CICS/VSE (Part 5 of 5)

Callable Interface Samples

136 QMF: Developing QMF Applications

DSQABFA TITLE ’SAMPLE SAA QUERY CALLABLE INTERFACE’
DSQABFA CSECT

* *
* Sample Program: DSQABFA *
* Assembler Version of the SAA Query Callable Interface *
* *

SPACE 1
STM R14,R12,12(R13) SAVE ENTRY REGISTERS
BALR R12,0 INITIALIZE BASE REGISTER
USING *,R12
LA R2,SAVEAREA CHAIN SAVE AREAS
ST R2,8(R13)
ST R13,SAVEAREA+4
LR R13,R2 ESTABLISH SAVE AREA
SPACE 1

* Start a query interface session *

LA R4,CICOMM ESTABLISH ACCESS TO DSQCOMM
USING DSQCOMM,R4
SPACE 1
MVC DSQ_COMM_LEVEL,DSQ_CURRENT_COMM_LEVEL
LA R1,1 1 PARAMETER
ST R1,NUMPARMS
CALL DSQCIA, X

(CICOMM, QI COMMON AREA X
STARTQIL, START COMMAND LENGTH X
STARTQI, START COMMAND X
NUMPARMS, NUMBER OF KEYWORDS X
STARTKYL, KEYWORD LENGTHS X
STARTKY, KEYWORDS X
STARTVL, VALUE LENGTHS X
STARTV, VALUES X
DSQ_VARIABLE_CHAR),VL VALUES ARE CHARACTERS

SPACE 1

Figure 28. DSQABFA, sample assembler program for TSO and CMS (Part 1 of 4)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 137

* Set numeric values into query using SET command *

SPACE 1
LA R1,20 SET VALUES TO BE MODIFIED
ST R1,VVAL1
LA R1,40
ST R1,VVAL2
LA R1,84
ST R1,VVAL3
LA R1,3 3 PARAMETERS
ST R1,NUMPARMS
SPACE 1
CALL DSQCIA, X

(CICOMM, X
SETGL, SET GLOBAL COMMAND LENGTH X
SETG, SET GLOBAL COMMAND X
NUMPARMS, NUM OF VARIABLES TO BE SET X
VNAME1L, VARIABLE NAME LENGTHS X
VNAME1, VARIABLE NAMES X
VVAL1L, VALUE LENGTHS X
VVAL1, VALUES X
DSQ_VARIABLE_FINT),VL VALUES ARE INTEGERS

SPACE 1

* Run a query *

SPACE 1
CALL DSQCIA, X

(CICOMM, X
QUERYL, QUERY COMMAND LENGTH X
QUERY),VL TEXT OF QUERY COMMAND

SPACE 1

* Print the result of the query *

SPACE 1
CALL DSQCIA,(CICOMM,REPTL,REPT),VL
SPACE 1

* End the query interface session *

SPACE 1
CALL DSQCIA,(CICOMM,ENDQIL,ENDQI),VL
SPACE 1

Figure 28. DSQABFA, sample assembler program for TSO and CMS (Part 2 of 4)

Callable Interface Samples

138 QMF: Developing QMF Applications

* Return *

SPACE 1
SR R15,R15 SET RETURN CODE
L R13,4(R13)
L R14,12(R13) RESTORE CALLER REGISTERS
LM R0,R12,20(R13)
BR R14
EJECT

* Data Areas *

SPACE 1
* Query Interface commands

SPACE 1
STARTQI DC C’START’ START FUNCTION
SETG DC C’SET GLOBAL’ SET GLOBAL FUNCTION
QUERY DC C’RUN QUERY Q1’ RUN QUERY
REPT DC C’PRINT REPORT (FORM=F1)’ PRINT REPORT
ENDQI DC C’EXIT’ END INTERFACE

SPACE 1
DS 0F

STARTQIL DC AL4(L’STARTQI) LENGTH OF START FUNCTION
SETGL DC AL4(L’SETG) LENGTH OF SET GLOBAL FUNCTION
QUERYL DC AL4(L’QUERY) LENGTH OF RUN QUERY COMMAND
REPTL DC AL4(L’REPT) LENGTH OF PRINT REPORT COMMAND
ENDQIL DC AL4(L’ENDQI) LENGTH OF END INTERFACE COMMAND

SPACE 1
* START command keyword

SPACE 1
STARTKY DC C’DSQSMODE’
STARTV DC C’INTERACTIVE’

DS 0F
STARTKYL DC AL4(L’STARTKY)
STARTVL DC AL4(L’STARTV)

SPACE 1

Figure 28. DSQABFA, sample assembler program for TSO and CMS (Part 3 of 4)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 139

* SET GLOBAL command variable names
SPACE 1

VNAME1 DC C’MYVAR01’
VNAME2 DC C’SHORT’
VNAME3 DC C’MYVAR03’

DS 0F
VNAME1L DC AL4(L’VNAME1)
VNAME2L DC AL4(L’VNAME2)
VNAME3L DC AL4(L’VNAME3)

SPACE 1
* SET GLOBAL command values

SPACE 1
VVAL1 DS F
VVAL2 DS F
VVAL3 DS F
VVAL1L DC AL4(L’VVAL1)
VVAL2L DC AL4(L’VVAL2)
VVAL3L DC AL4(L’VVAL3)

SPACE 1
NUMPARMS DS F NUMBER OF KEYWORDS

SPACE 1
* callable interface communications area

SPACE 1
CICOMM DS CL(DSQCOMM_LEN)

SPACE 1
SAVEAREA DS 18F

EJECT
DSQCOMMA
SPACE 1

R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 1
END DSQABFA

Figure 28. DSQABFA, sample assembler program for TSO and CMS (Part 4 of 4)

Callable Interface Samples

140 QMF: Developing QMF Applications

DSQCOMM for Assembler
This communications area changed between Version 2 Release 4 and Version
3.2. QMF ships this file as DSQCOMMA.

MACRO 00001000
DSQCOMMA 00002000

** 00003000
* Callable Interface - variable constants * 00004000
** 00005000
* 00006000
* Communications Level ID 00007000
* 00008000
DSQ_CURRENT_COMM_LEVEL DC CL12’DSQL>001002<’ 00009000
* 00010000
* Query Product IDs 00011000
* 00012000
DSQ_QRW DC C’01’ 00013000
DSQ_QMF DC C’02’ 00014000
DSQ_QM4 DC C’03’ 00015000
* 00016000
* Query Product Release IDs 00017000
* 00018000
DSQ_QRW_V1R2 DC C’01’ 00019000
DSQ_QRW_V1R3 DC C’02’ 00020000
DSQ_QMF_V2R4 DC C’01’ 00021000
DSQ_QMF_V3R1 DC C’02’ 00022000
DSQ_QMF_V3R1M1 DC C’03’ 00023000
DSQ_QMF_V3R2 DC C’04’ 00024000
DSQ_QMF_V3R3 DC C’05’ 00025000
DSQ_QMF_V6R1 DC C’06’ 00026000
DSQ_QM4_V1R1 DC C’01’ 00027000
* 00028000
* Extended parameter data types 00029000
* 00030000
DSQ_VARIABLE_CHAR DC C’CHAR’ 00031000
DSQ_VARIABLE_FINT DC C’FINT’ 00032000
* 00033000
* Return codes 00034000
* 00035000
DSQ_SUCCESS EQU 0 00036000
DSQ_WARNING EQU 4 00037000
DSQ_FAILURE EQU 8 00038000
DSQ_SEVERE EQU 16 00039000
* 00040000
* Instance ID values 00041000
* 00042000
DSQ_CONTINUE EQU 0 00043000
* 00044000

Figure 29. DSQCOMMA, assembler communications area (Part 1 of 2)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 141

Running Your Assembler programs in CICS
After you write your program, you need to translate, assemble, and link-edit
it before you can run it. The examples listed in this section show the steps
necessary to do so. QMF does not ship the REXX EXEC, JCL, or CLIST in
these examples, but you can copy them from here, altering them to suit your
installation.

Translating, assembling, and link-editing for CICS in MVS
When you translate, assemble, and link-edit a program that uses the QMF
callable interface, be aware of the following:
v The communications area macro DSQCOMMA must be available to the

assemble step or copied into your program as a DSECT.

* Cancel indicator 00045000
* 00046000
DSQ_CANCEL_YES EQU C’1’ 00047000
DSQ_CANCEL_NO EQU C’0’ 00048000
* 00049000
* 00050000
DSQ_INTERACTIVE EQU C’1’ 00051000
DSQ_BATCH EQU C’2’ 00052000
* 00053000
DSQ_YES EQU C’1’ 00054000
DSQ_NO EQU C’2’ 00055000
* 00056000
** 00057000
* Callable Interface Communications Area * 00058000
** 00059000
DSQCOMM DSECT 00060000
DSQ_RETURN_CODE DS F FUNCTION RETURN CODE 00061000
DSQ_INSTANCE_ID DS F ID ESTABLISHED IN START CMD 00062000
DSQ_COMM_LEVEL DS CL12 COMMUNICATIONS LEVEL ID 00063000
DSQ_PRODUCT DS CL2 QUERY PRODUCT ID 00064000
DSQ_PRODUCT_RELEASE DS CL2 QUERY PRODUCT RELEASE ID 00065000
DSQ_RESERVE1 DS CL28 RESERVED 00066000
DSQ_MESSAGE_ID DS CL8 COMPLETION MESSAGE ID 00067000
DSQ_Q_MESSAGE_ID DS CL8 QUERY MESSAGE ID 00068000
DSQ_START_PARM_ERROR DS CL8 START PARAMETER IN ERROR 00069000
DSQ_CANCEL_IND DS C CMD CANCEL INDICATOR 00070000
DSQ_RESERVE2 DS CL23 RESERVED 00071000
DSQ_RESERVE3 DS CL156 RESERVED 00072000
DSQ_MESSAGE_TEXT DS CL128 COMPLETION MESSAGE 00073000
DSQ_Q_MESSAGE_TEXT DS CL128 QUERY MESSAGE 00074000

SPACE 1 00075000
DSQCOMM_LEN EQU *-DSQCOMM LENGTH OF DSQCOMM AREA 00076000

MEND 00077000

Figure 29. DSQCOMMA, assembler communications area (Part 2 of 2)

Callable Interface Samples

142 QMF: Developing QMF Applications

v The QMF interface module DSQCIA must be made available during the
link-edit phase of your program.

The following JCL shows an example of the CICS-supplied procedure
DFHEBTAL. For instructions on how to use this procedure, see CICS for
VSE/ESA System Definition Guide

Translating, assembling, and link-editing for CICS in VSE
The following VSE job control is an example of installing an HLASM program
into CICS running in VSE/ESA. This example is shipped with QMF and is
located in the QMF sublibrary under the name of DSQ3CIAC.Z. See CICS for
VSE/ESA System Definition Guide for more information.

If your installation is using HLASM, make sure that your system
administrator has established a VSE library exit that handles the macro
processing of E-Decks. This exit reads the DSQCOMMA. For a description of
how to set up this exit, see VSE Guide to System Functions and IBM High-Level
Assembler Programmer’s Guide for OS/390, VM and VSE for detailed
information.

Use the following HLASM compiler options to assemble the program:
’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXIT(ORDER=EA)))’

//sampasm JOB
// EXEC PROC=DFHEBTAL
//TRN.SYSIN DD *
*ASM XOPTS(CICS translator options)

.
Your program or copy of QMF sample DSQABFA
.

/*
//* Provide Access to QMF Communications Macro DSQCOMM
//ASM.SYSLIB DD DSN=QMF720.SDSQSAPE,DISP=SHR
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD(DFHEAI)
INCLUDE CICSLOAD(DFHEAI0)
INCLUDE QMFLOAD(DSQCIA)
ORDER DFHEAI,DFHEAI0
ENTRY sampasm
MODE AMODE(31) RMODE(ANY)
NAME sampasm(R)

/*

Figure 30. JCL for running the CICS translator, assembler, and linkage editor

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 143

The LIBEXIT parameter includes CICS macro definitions created by the CICS
translation process.

// JOB DSQ3CIAC
* --
* Install QMF Callable Interface (HLASM)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
* ---
// DLBL IJSYSPH,’ASM.TRANSLATION’,0
// EXTENT SYSPCH,,1,0,&START,&SIZE.
ASSGN SYSPCH,DISK,VOL=&VOLID.,SHR
* Library search chain must contain the QMF, CICS and HLASM sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate Callable Interface program
* ---
* You may need to update or remove the SLI statement for your program.
* ---
// EXEC DFHEAP1$
* $$ SLI MEM=DSQABFAC.Z,S=PRD2.PROD
/*

Figure 31. Job control for running assembler and linkage editor in VSE (Part 1 of 2)

Callable Interface Samples

144 QMF: Developing QMF Applications

Assembling and running your programs under CMS in VM
The following sample program assembles and runs your callable interface
application using the Assembler H compiler. QMF does not ship the REXX
EXEC in this example, but you can copy it from here, altering it to suit your
installation.

* --
* Step 2: Assemble Callable Interface program
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’ASM.TRANSLATION’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID.,SHR
// OPTION CATAL,DECK,SYM,ERRS

PHASE DSQABFAC,*
INCLUDE DFHEAI
INCLUDE DFHEAI0
INCLUDE DSQCIA
INCLUDE DSQCLOD2
INCLUDE DSQCMCVP

// EXEC ASMA90,SIZE=(ASMA90,50K), C
PARM=’LIBMAC,USING(NOLIMIT,NOWARN),EXIT(LIBEXIT(EDECKXITC
(ORDER=EA)))’

CLOSE SYSIPT,SYSRDR
/*
* --
* Step 3: Link-edit Callable Interface program
* ---
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 31. Job control for running assembler and linkage editor in VSE (Part 2 of 2)

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 145

/**/
/* Assemble your program and execute it. */
/**/
TRACE off
ADDRESS CMS

/**/
/* Assemble the program */
/**/
"ERASE TEMPP MACLIB A"
"MACLIB GEN TEMPP DSQCOMMA"
Maclist = "TEMPP DMSSP CMSLIB OSMACRO"
"GLOBAL MACLIB" Maclist
"HASM yourname"

/**/
/* Access SQL/DS and initialize database */
/**/
"EXEC PRODUCT SQLDS"
"EXEC SQLINIT DBNAME(SQLDBA)"

/**/
/* Access GDDM product disk */
/**/
"EXEC PRODUCT GDDM"

/**/
/* Issue Filedefs for QMF product */
/**/
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 133 BLKSIZE 133 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"

Figure 32. REXX program to assemble and run your program (Part 1 of 2)

Callable Interface Samples

146 QMF: Developing QMF Applications

Running your Assembler programs in TSO
You must assemble and link-edit your program before you can run it in TSO.
The following sections provide sample jobs that assemble and link-edit your
programs and sample programs for running your assembled program in TSO
either with or without ISPF.

Assembling and link-editing in TSO
The following sample job assembles and link-edits your program using
Assembler H. Some parameters might vary from one installation to the next.
See your QMF administrator for details.

After your program is assembled successfully, you can run it.

/**/
/* Provide access to QMF and GDDM program libraries */
/**/
"GLOBAL LOADLIB DSQLDLIB "
"GLOBAL TXTLIB ADMRLIB ADMPLIB ADMGLIB"

Say "Starting to execute ’ASSEMBLER’ program"
ADDRESS CMS "RUN yourname"

Exit 0

Figure 32. REXX program to assemble and run your program (Part 2 of 2)

//sampasm JOB
//STEP1 EXEC PROC=ASMHCL
//* Provide Access to QMF Communications Macro DSQCOMM
//C.SYSLIB DD DSN=QMF720.SAMPLIB,DISP=SHR
//C.SYSIN DD *

.
Your program or copy of QMF sample DSQABFA
.

/*
//* Provide Access to QMF Interface Module
//L.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//L.SYSIN DD *

INCLUDE QMFLOAD(DSQCIA)
ENTRY sampasm
MODE AMODE(31) RMODE(ANY)
NAME sampasm(R)

/*

Figure 33. JCL for running assembler and linkage editor in TSO

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 147

Running in TSO under ISPF
After your program is assembled successfully, you can run it under ISPF by
writing a program similar to the following:

Callable Interface Samples

148 QMF: Developing QMF Applications

The EXIT CODE(4) suppresses the ISPF disposition panel.

PROC 0
CONTROL ASIS
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’,’ISR.ISRCLIB’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* Datasets used by ISPF */
/**/
ALLOC FI(ISPLLIB) SHR REUSE +

DA(’QMF720.SDSQLOAD’,’ADM.GDDMLOAD’,’DSN.DSNEXIT’,’DSN.DSNLOAD’)
ALLOC FI(ISPMLIB) SHR REUSE +

DA(’QMF720.SDSQMLBE’,’ISR.ISRMLIB’,’ISP.ISPMLIB’)
ALLOC FI(ISPPLIB) SHR REUSE +

DA(’QMF720.SDSQPLBE’,’ISR.ISRPLIB’,’ISP.ISPPLIB’)
ALLOC FI(ISPSLIB) SHR REUSE +

DA(’QMF720.SDSQSLBE’,’ISR.ISRSLIB’,’ISP.ISPSLIB’)
ALLOC FI(ISPTLIB) SHR REUSE +

DA(’ISR.ISRTLIB’,’ISP.ISPTLIB’)
/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program as the initial ISPF dialog */
/**/
ISPSTART PGM(sampasm) NEWAPPL(DSQE)
EXIT CODE(4)

Figure 34. CLIST for running your program in TSO under ISPF

Callable Interface Samples

Appendix A. Sample Code for Callable Interface Languages 149

Running in TSO without ISPF
After your program is assembled successfully, you can run it in TSO without
ISPF by writing a program similar to the following:

C Language Interface

The C Language callable interface provided here corresponds to that provided
for other SAA languages.

For the C language, QMF provides a DSQCOMMC communications macro
and two function calls, DSQCICE and DSQCIC.

Note: To access QMF from a C++ application, you need an interface written
in C.

PROC 0
CONTROL ASIS
/**/
/* Note: QMF, DB2 and GDDM load libraries must be allocated */
/* before executing this CLIST. */
/* Name of QMF load library is "QMF720.SDSQLOAD". */
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program using TSO CALL command */
/**/
CALL sampasm
EXIT CODE(0)

Figure 35. CLIST for running your program under TSO without ISPF

Callable Interface Samples

150 QMF: Developing QMF Applications

Interface communications area mapping for C language (DSQCOMMC)
DSQCOMMC provides DSQCOMM mapping for C language and is shipped
with the product. Table 16 shows the values for DSQCOMMC.

Table 16. Interface communications area for DSQCOMMC

Structure Name Data Type Description

DSQ_RETURN_CODE signed long
integer

Indicates the status of a QMF command after it
has been run. Its values are:

DSQ_SUCCESS
Successful execution of the request.

DSQ_WARNING
Normal completion with warnings.

DSQ_FAILURE
Command did not run correctly.

DSQ_SEVERE
Severe error; QMF session terminated.

DSQ_INSTANCE_ID signed long
integer

Identifier established by QMF during execution of
the START command

DSQ_COMM_LEVEL character, length
12

Identifies the level of the DSQCOMM. You should
set this to the value of
DSQ_CURRENT_COMM_LEVEL before issuing
the QMF START command.

DSQ_PRODUCT character, length
2

Identifies the IBM query product in use.

DSQ_PRODUCT_RELEASE character, length
2

Identifies the release level of the query product in
use.

DSQ_RESERVE1 character, length
28

Reserved for future use

DSQ_MESSAGE_ID character, length
8

Completion message ID

DSQ_Q_MESSAGE_ID character, length
8

Query message ID

DSQ_START_PARM_ERROR character, length
8

Parameter in error when START failed due to a
parameter error

DSQ_CANCEL_IND character, length
1

Contains one of two values, depending if the user
canceled while a QMF command was running:

v DSQ_CANCEL_YES

v DSQ_CANCEL_NO

DSQ_RESERVE2 character, length
23

Reserved for future use

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 151

Table 16. Interface communications area for DSQCOMMC (continued)

Structure Name Data Type Description

DSQ_RESERVE3 character, length
156

Reserved for future use

DSQ_MESSAGE_TEXT character, length
128

Completion message text

DSQ_Q_MESSAGE_TEXT character, length
128

Query message text

Function calls for the C language
QMF provides two function calls for the C language: DSQCIC and DSQCICE.

DSQCIC
This call is for QMF commands that do not require access to application
program variables. Use this call for most QMF commands.

DSQCIC (&DSQCOMM,&CMDLTH,&CMDSTR)

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string, CMDSTR; a long type parameter

CMDSTR
QMF command to run, specified as an array of unsigned character type of
the length specified by CMDLTH. The QMF command must be uppercase.

DSQCICE
This call has an extended syntax for the three QMF commands that do require
access to application program variables: START and the extended formats of
GET GLOBAL and SET GLOBAL.

DSQCICE (&DSQCOMM,&CMDLTH,&CMDSTR,
&PNUM,&KLTH,&KWORD,
&VLTH,&VALUE,&VTYPE);

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
Length of the command string, CMDSTR; a long integer parameter.

C Language Interface

152 QMF: Developing QMF Applications

CMDSTR
QMF command to run. It is an array of unsigned character type. The
QMF command must be uppercase.

PNUM
Number of command keywords. It is a long integer parameter.

KLTH
Length of each specified keyword, &KWORD. It is a long integer
parameter or an array of long integer parameters.

KWORD
QMF keyword or keywords. Each is an unsigned character array.

VLTH
Length of each value associated with the keyword; a long integer
parameter or array of long integer parameters

VALUE
Value associated with each keyword. Its type is specified in the VTYPE
parameter, and can be an unsigned character array, a long integer
parameter, or array of long integer parameters.

VTYPE
Data type of the value string VALUE. This type has one of two values,
which are provided in the communications macro, DSQCOMMC:
v DSQ_VARIABLE_CHAR for unsigned character type
v DSQ_VARIABLE_FINT for long integer

All of the values specified in the VALUE field must have the data type
specified in VTYPE.

The C language interface is similar to the others. There are, however, the
following parameter considerations:
v Command strings, START, GET, and SET command parameters are all input

character strings. For these, C requires you to pass a storage area that is
terminated with a null value, which must be included in the parameter’s
length. The compile-time length function should be used to obtain the
parameter length that is passed to the QMF interface.

v If the string is not terminated by a null before reaching the end of the
string, an error is returned by QMF. The null value (X'00') indicates the end
of a character string.

v For C parameters that are output character strings, including values
obtained by the GET command, QMF moves data from QMF storage to the
application’s storage area and sets the null indicator at the end of the
string. If the character string does not fit in the user’s storage area, a
warning message is issued and the data is truncated on the right. A null
indicator is always placed at the end of the data string.

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 153

Migration information
The DSQCOMM changed from Version 2 Release 4 to Version 3.2.
v If you want to continue using the old DSQCOMM, you do not have to

recompile your program.
v If you want to use the Version 3.2 version of DSQCICX, you must link-edit

your Version 2 Release 4 program again.

However, the Version 3.2 DSQCOMM provides message text that is especially
useful if you have an error in your START command. If you want to use the
new DSQCOMM, you need to recompile your program, and initialize
DSQ_COMM_LEVEL (in DSQCOMM) to DSQ_CURRENT_COMM_LEVEL. If
you do not set this value, QMF treats your DSQCOMM as a Version 2 Release
4 level.

Note to CICS users in MVS

The DSQCICX changed from Version 3 Release 1 Modification 1 to
Version 3 Release 2. The interface between the QMF-supplied function
call and the main QMF program has changed from a CALL interface to
an EXEC CICS LINK interface. The new interface provides better
isolation from the user program and the QMF product. Because the
interface has changed, programs that used the callable interface must be
link-edited again.

C language programming example
This example shows the SAA callable interface for IBM C language.

The following program, DSQABFC, is shipped with the QMF product. You
can look at the sample source code listing here or you can access it online.
v For OS/390, the sample program is a member of the library

QMF720.SDSQSAPE.
v For VM, the sample program is on the production disk.
v For VSE, the sample program is in the QMF sublibrary and named

DSQABFC.Z.

The sample program for the C language callable interface performs the
following function:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

C Language Interface

154 QMF: Developing QMF Applications

QMF does not supply query Q1 or form F1, but the sample program uses
these objects.

This section also shows how to compile, link-edit, and run a C language
program that uses the callable interface. QMF does not ship the REXX EXEC,
JCL, or CLIST in these examples, but you can copy them from here, altering
them to suit your installation.

/**/
/* Sample Program: DSQABFC */
/* C Version of the SAA Query Callable Interface */
/**/

/**/
/* Include standard and string "C" functions */
/**/
#include <string.h>
#include <stdlib.h>

/**/
/* Include and declare query interface communications area */
/**/
#include <DSQCOMMC.H>

int main()
{

struct dsqcomm communication_area; /* DSQCOMM from include */

/**/
/* Query interface command length and commands */
/**/
signed long command_length;
static char start_query_interface[] = "START";
static char set_global_variables[] = "SET GLOBAL";
static char run_query[] = "RUN QUERY Q1";
static char print_report[] = "PRINT REPORT (FORM=F1";
static char end_query_interface[] = "EXIT";

/**/
/* Query command extension, number of parameters and lengths */
/**/
signed long number_of_parameters; /* number of variables */
signed long keyword_lengths[10]; /* lengths of keyword names */
signed long data_lengths[10]; /* lengths of variable data */

Figure 36. DSQABFC, sample C program (Part 1 of 3)

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 155

/**/
/* Variable data type constants */
/**/
static char char_data_type[] = DSQ_VARIABLE_CHAR;
static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/
/* Keyword parameter and value for START command */
/**/
static char start_keywords[] = "DSQSMODE";
static char start_keyword_values[] = "INTERACTIVE";
/**/
/* Keyword parameter and values for SET command */
/**/
#define SIZE_VAL 8
char set_keywords [3][SIZE_VAL]; /* Parameter name array */
signed long set_values[3]; /* Parameter value array */

/**/
/* MAIN PROGRAM */
/**/

/**/
/* Start a Query Interface Session */
/**/

strncpy (communication_area.dsq_comm_level,
DSQ_CURRENT_COMM_LEVEL,
sizeof(communication_area.dsq_comm_level));

number_of_parameters = 1;
command_length = sizeof(start_query_interface);
keyword_lengths[0] = sizeof(start_keywords);
data_lengths[0] = sizeof(start_keyword_values);
dsqcice(&communication_area,;

&command_length,;
&start_query_interface[0],
&number_of_parameters,;
&keyword_lengths[0],
&start_keywords[0],
&data_lengths[0],
&start_keyword_values[0],
&char_data_type[0]);

Figure 36. DSQABFC, sample C program (Part 2 of 3)

C Language Interface

156 QMF: Developing QMF Applications

/**/
/* Set numeric values into query using SET command */
/**/

number_of_parameters = 3;
command_length = sizeof(set_global_variables);
strcpy(set_keywords[0],"MYVAR01");
strcpy(set_keywords[1],"SHORT");
strcpy(set_keywords[2],"MYVAR03");
keyword_lengths[0] = SIZE_VAL;
keyword_lengths[1] = SIZE_VAL;
keyword_lengths[2] = SIZE_VAL;
data_lengths[0] = sizeof(long);
data_lengths[1] = sizeof(long);
data_lengths[2] = sizeof(long);
set_values[0] = 20;
set_values[1] = 40;
set_values[2] = 84;
dsqcice(&communication_area,;

&command_length,;
&set_global_variables[0],
&number_of_parameters,;
&keyword_lengths[0],
&set_keywords[0][0],
&data_lengths[0],
&set_values[0],
&int_data_type[0]);

/**/
/* Run a Query */
/**/

command_length = sizeof(run_query);
dsqcic(&communication_area,&command_length,;

&run_query[0]);

/**/
/* Print the results of the query */
/**/

command_length = sizeof(print_report);
dsqcic(&communication_area,&command_length,;

&print_report[0]);

/**/
/* End the query interface session */
/**/

command_length = sizeof(end_query_interface);
dsqcic(&communication_area,&command_length,;

&end_query_interface[0]);
exit(0);

}

Figure 36. DSQABFC, sample C program (Part 3 of 3)

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 157

DSQCOMM for C
This include file, DSQCOMMC, is shipped with the QMF product.

/**/
/* C Include for Query Callable Interface (MVS/VM) */
/**/

/* Structure declare for Communications Area */

struct dsqcomm {
long int dsq_return_code; /* Function return code */
long int dsq_instance_id; /* id established in start cmd*/
char dsq_comm_level[12]; /* communications level id */
char dsq_product[2]; /* query product id */
char dsq_product_release[2]; /* query product release */
char dsq_reserve1[28]; /* reserved */
char dsq_message_id[8]; /* completion message ID */
char dsq_q_message_id[8]; /* query message ID */
char dsq_start_parm_error[8]; /* start parameter in error */
char dsq_cancel_ind[1]; /* cmd cancelled indicator */

/* 1 = cancelled, 0 = not cancelled*/
char dsq_reserve2[23]; /* RESERVED AREAS */
char dsq_reserve3[156];
char dsq_message_text[128]; /* Message text */
char dsq_q_message_text[128]; /* Query message text */

} ;

/* RETURN CODES */

#define DSQ_SUCCESS 0
#define DSQ_WARNING 4
#define DSQ_FAILURE 8
#define DSQ_SEVERE 16

/* Communications Level */

#define DSQ_CURRENT_COMM_LEVEL "DSQL>001002<"

/* Query Product Codes */

#define DSQ_QRW "01"
#define DSQ_QMF "02"
#define DSQ_QM3 "03"

/* Query Product Release Levels */

#define DSQ_QRW_V1R2 "01"
#define DSQ_QRW_V1R3 "02"
#define DSQ_QMF_V2R4 "01"
#define DSQ_QMF_V3R1 "02"
#define DSQ_QMF_V3R1M1 "03"
#define DSQ_QMF_V3R2 "04"
#define DSQ_QMF_V3R3 "05"
#define DSQ_QMF_V6R1 "06"
#define DSQ_QM4_V1R1 "01"

Figure 37. DSQCOMMC, C communications area (Part 1 of 2)

C Language Interface

158 QMF: Developing QMF Applications

Running your programs in CICS
After writing a program, you need to translate, compile, and link-edit it
before you can run it. The examples in this section show the necessary steps.
QMF does not ship the REXX EXEC, JCL, or CLIST in these examples, but
you can copy them from here, altering them to suit your installation.

When you translate, compile, and link-edit a program that uses the QMF
callable interface under CICS, consider the following:
v The communications area macro DSQCOMMC must be available to the

compile step or copied into your program.
v The QMF interface module DSQCICX must be available during the link-edit

phase of your program.

/* INSTANCE CODES */

#define DSQ_CONTINUE 0

/* CANCELLED INDICATOR */

#define DSQ_CANCEL_YES "1"
#define DSQ_CANCEL_NO "0"

/* VARIABLE TYPES */

#define DSQ_VARIABLE_CHAR "CHAR"
#define DSQ_VARIABLE_FINT "FINT"

#define DSQ_INTERACTIVE "1"
#define DSQ_BATCH "2"

#define DSQ_YES "1"
#define DSQ_NO "2"

/* Call Interface structure */

/* Calling format for normal call with 3 parameters */
#define dsqcic(parm1, parm2, parm3)\

dsqcicx(parm1, parm2, parm3)

/* Calling format for call with CMD_EXT area 9 parameters */
#define dsqcice(parm1, parm2, parm3,\

parm4, parm5, parm6, parm7, parm8, parm9)\
dsqcicx(parm1, parm2, parm3, \
parm4, parm5, parm6, \
parm7, parm8, parm9)

/* DECLARE OS LINKAGE FORMAT */

#pragma linkage(dsqcicx, OS)

Figure 37. DSQCOMMC, C communications area (Part 2 of 2)

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 159

Translating, compiling, and link-editing for CICS in MVS
The following example uses the CICS-supplied procedure DFHEBTDL. For
instructions on how to use this procedure, see CICS for VSE/ESA System
Definition Guide

C/370 language programs must be link-edited with AMODE=31.

Translating, compiling, and link-editing for CICS in VSE
During the C/370 pre-link step, the IBM-supplied interface objects
(DSQCICX.OBJ, DSQCLOD2.OBJ, and DSQCMCVP.OBJ) located in sublibrary
PRD2.PROD (the QMF default install sublibrary) must be available in the
LIBDEF * search chain.

During the link-edit step, the CICS assembler interface DFHEAI0 must be in
the LIBDEF * search chain, as shown in Figure 39 on page 161.

This sample job control is stored in PRD2.PROD as DSQ3CIC.Z.

//sampleC JOB
// EXEC PROC=DFHEBTDL
//TRN.SYSIN DD *
#pragma XOPTS(CICS translator options)

.
Your program or copy of QMF sample DSQABFC
.

/*
//* Provide Access to QMF Communications Macro DSQCOMMC
//ASM.SYSLIB DD DSN=QMF720.SDSQSAPE,DISP=SHR
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD(DFHELII)
INCLUDE QMFLOAD(DSQCICX)
ORDER DFHELII
ENTRY sampleC
MODE AMODE(31) RMODE(ANY)
NAME sampleC(R)

/*

Figure 38. JCL for running the CICS translator, C compiler, and linkage editor

C Language Interface

160 QMF: Developing QMF Applications

// JOB DSQ3CIC Sample job to Install QMF Callable Interface (C/370)
* ---
* Install QMF Callable Interface Example (C/370)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block
// SETPARM SIZE=ntrks *-- update number of tracks/blocks
// SETPARM VOLID2=volid2 *-- update volid for work area
// SETPARM START2=rtrk *-- update start track/block
// SETPARM SIZE2=ntrks *-- update number of tracks/blocks
* ---
// DLBL IJSYSPH,’c.translation’,0
// EXTENT SYSPCH,,1,0,&START,&SIZE
ASSGN SYSPCH,DISK,VOL=&VOLID,SHR
* Library search chain must contain the QMF, CICS and C/370 sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate callable interface program (C/370)
* ---
* You may need to update or remove the SLI statement for your program.
* ---
// EXEC DFHEDP1$,SIZE=256K
..* $$ SLI MEM=DSQABFC.Z,S=PRD2.QMFD
/*
CLOSE SYSPCH,00D
* ---
* Step 2: Compile callable interface program (C/370)
* ---
// DLBL IJSYSIN,’c.translation’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID,SHR
// DLBL IJSYSPH,’compiler.output’,0
// EXTENT SYSPCH,,1,0,&START2,&SIZE2
ASSGN SYSPCH,DISK,VOL=&VOLID2,SHR
// OPTION DECK
// EXEC EDCCOMP,SIZE=EDCCOMP,PARM=’RENT’
CLOSE SYSIPT,SYSRDR
CLOSE SYSPCH,00D
* ---
* Step 3: Pre-link callable interface program (C/370)
* ---
// DLBL IJSYSIN,’compiler.output’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID2,SHR
// OPTION CATAL,NODECK

PHASE DSQABFC,*
INCLUDE DFHELII
INCLUDE DFHEAI0

// EXEC EDCPRLK,SIZE=EDCPRLK
CLOSE SYSIPT,SYSRDR
/*

Figure 39. Job control to run the CICS/VSE translator, C compiler, and linkage editor (Part 1 of 2)

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 161

Compiling and running your programs under CMS in VM
The following program compiles and runs your callable interface application
using the IBM C compiler.

QMF does not ship the REXX EXEC in this example, but you can copy it from
here, altering it to suit your installation.

* ---
* Step 4: Link-edit callable interface program (C/370)
* ---
// EXEC LNKEDT,PARM=’AMODE=24,RMODE=24’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&

Figure 39. Job control to run the CICS/VSE translator, C compiler, and linkage editor (Part 2 of 2)

C Language Interface

162 QMF: Developing QMF Applications

You might have to modify this program to suit your installation.

Running your C programs in TSO
The following sections provide sample jobs for compiling and link-editing
your callable interface application and sample programs for running your
compiled programs either with or without ISPF.

Compiling and link-editing in TSO
The following job compiles and link-edits your callable interface application
using the IBM C compiler for MVS. Some parameters might vary from one
installation to the next. See your QMF administrator for details.

/**/
/* Compile your program and run it. */
/**/
TRACE off
ADDRESS CMS
/**/
/* Access C product disk using an exec, PRODUCT, that you write. */
/**/
EXEC PRODUCT ADC370
/**/
/* Compile the program */
/**/
"GLOBAL TXTLIB IBMLIB SCEELKED"
"GLOBAL LOADLIB EDCLINK SCREERUN"
"CC" PNAME "(SOURCE SHOWINC"
/**/
/* Create an executable "C" module file */
/**/
"GLOBAL LOADLIB DSQLDLIB SCREERUN"
"GLOBAL TXTLIB EDCBASE ADMRLIB ADMPLIB ADMGLIB"
"CMOD yourname DSQCICX DSQCLOD2 DSQCMCVP"
/**/
/* Access SQL/DS and initialize database */
/**/
"EXEC PRODUCT SQLDS"
"EXEC SQLINIT DBNAME(SQLDBA)"
/**/
/* Access GDDM product disk */
/**/
"EXEC PRODUCT GDDM"
/**/
/* Issue Filedefs for QMF product */
/**/
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 133 BLKSIZE 133 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"
/**/
/* Provide access to QMF and C program libraries */
/**/
"GLOBAL LOADLIB DSQLDLIB SCREERUN"
"GLOBAL TXTLIB EDCBASE ADMRLIB ADMPLIB ADMGLIB"
Say "Starting to run ’C’ program"
"yourname"

Exit 0

Figure 40. REXX program to compile and run your program

C Language Interface

Appendix A. Sample Code for Callable Interface Languages 163

Running your programs in TSO without ISPF
After your program has been compiled successfully, you can write a program
similar to the following to run it:

//sampleC JOB
//STEP1 EXEC PROC=EDCCL,LPARM=’MAP’
//* Provide Access to QMF Communications Macro DSQCOMM
//COMPILE.SYSLIB DD DSN=QMF720.SAMPLIB,DISP=SHR
//COMPILE.SYSIN DD DATA,DLM=’<>’

.
Your program or copy of QMF sample DSQABFC
.

<>
//* Provide Access to QMF Interface Module DSQCICX
//LKED.SYSLIB DD DSN=QMF720.SDSQLOAD,DISP=SHR
/*

Figure 41. JCL for running the C compiler and linkage editor in TSO

PROC 0
CONTROL ASIS
/**/
/* Note: QMF, DB2, GDDM and C load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF710.SDSQLOAD". */
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)

Figure 42. CLIST for running your program in TSO without ISPF (Part 1 of 2)

C Language Interface

164 QMF: Developing QMF Applications

/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program using TSO CALL command */
/**/
CALL sampleC
EXIT CODE(0)

Figure 42. CLIST for running your program in TSO without ISPF (Part 2 of 2)

Running your programs in TSO under ISPF
After your program has been compiled successfully, you can write a program
similar to the following to run it:

PROC 0
CONTROL ASIS
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’,’ISR.ISRCLIB’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)

Figure 43. CLIST for running DSQABFC in TSO under ISPF (Part 1 of 2)

C Language Interface

166 QMF: Developing QMF Applications

The EXIT CODE(4) suppresses the ISPF disposition panel.

COBOL language interface

The COBOL callable interface provided here corresponds to that provided for
other SAA languages.

/**/
/* Datasets used by ISPF */
/**/
ALLOC FI(ISPLLIB) SHR REUSE +

DA(’QMF720.SDSQLOAD’,’ADM.GDDMLOAD’,’DSN.DSNEXIT’,’DSN.DSNLOAD’, +
’EDC.SEDCLINK’,’PLI.SIBMLINK’)

ALLOC FI(ISPMLIB) SHR REUSE +
DA(’QMF720.SDSQMLBE’,’ISR.ISRMLIB’,’ISP.ISPMLIB’)

ALLOC FI(ISPPLIB) SHR REUSE +
DA(’QMF720.SDSQPLBE’,’ISR.ISRPLIB’,’ISP.ISPPLIB’)

ALLOC FI(ISPSLIB) SHR REUSE +
DA(’QMF720.SDSQSLBE’,’ISR.ISRSLIB’,’ISP.ISPSLIB’)

ALLOC FI(ISPTLIB) SHR REUSE +
DA(’ISR.ISRTLIB’,’ISP.ISPTLIB’)

/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program as the initial ISPF dialog */
/**/
ISPSTART PGM(sampleC) NEWAPPL(DSQE)
EXIT CODE(4)

Figure 43. CLIST for running DSQABFC in TSO under ISPF (Part 2 of 2)

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 167

To write callable interface programs in COBOL, you must use VS COBOL II,
COBOL/370, IBM COBOL for MVS and VM, or IBM COBOL for VSE. 3

Interface communications area mapping for COBOL (DSQCOMMB)
DSQCOMMB provides DSQCOMM mapping for COBOL and is shipped with
the product. Table 17 shows the values for DSQCOMMB.

Table 17. Interface communications area for DSQCOMMB

Structure Name Data Type Description

DSQ-RETURN-CODE PIC 9(8) Indicates the status of a QMF command after it
has run. Its values are:

DSQ-SUCCESS
Successful execution of the request.

DSQ-WARNING
Normal completion with warnings.

DSQ-FAILURE
Command did not run correctly.

DSQ-SEVERE
Severe error; QMF session terminated.

DSQ-INSTANCE-ID PIC 9(8) Identifier established by QMF during execution of
the START command

DSQ-COMM-LEVEL PIC X(12) Identifies the level of the DSQCOMM. You should
set this to the value of
DSQ_CURRENT_COMM_LEVEL before issuing
the QMF START command.

DSQ-PRODUCT PIC X(2) Identifies the IBM query product in use.

DSQ-PRODUCT-RELEASE PIC X(2) Identifies the release level of the query product in
use.

DSQ-RESERVE1 PIC X(28) Reserved for future use

DSQ-MESSAGE-ID PIC X(8) Completion message ID

DSQ-Q-MESSAGE-ID PIC X(8) Query message ID

DSQ-START-PARM-ERROR PIC X(8) Parameter in error when START failed due to a
parameter error

DSQ-CANCEL-IND PIC X(1) Contains one of two values, depending if the user
canceled while a QMF command was running:

v DSQ-CANCEL-YES

v DSQ-CANCEL-NO

DSQ-RESERVE2 PIC X(23) Reserved for future use

3. COBOL/370 is not supported in CICS/VSE.

COBOL Language Interface

168 QMF: Developing QMF Applications

Table 17. Interface communications area for DSQCOMMB (continued)

Structure Name Data Type Description

DSQ-RESERVE3 PIC X(156) Reserved for future use

DSQ-MESSAGE-TEXT PIC X(128) Completion message text

DSQ-Q-MESSAGE-TEXT PIC X(128) Query message text

Function calls for COBOL
QMF provides one function call, DSQCIB, for the COBOL language. It is
described in the communications macro DSQCOMMB. This function call has
two formats: DSQCIB and DSQCIB extended format.

DSQCIB
This call is for QMF commands that do not require access to application
program variables. Use this call for most QMF commands.

CALL DSQCIB USING DSQCOMM CMDLTH CMDSTR

The parameters have the following values:

DSQCOMM
The interface communications area

CMDLTH
Length of the command string, CMDSTR. It is an integer parameter.

CMDSTR
QMF command to run. It is an uppercase character string of the length
specified by CMDLTH.

DSQCIB, extended format
This call has an extended syntax for the three QMF commands that do require
access to application program variables: START and the extended formats of
GET GLOBAL and SET GLOBAL.

DSQCIB USING
DSQCOMM CMDLTH CMDSTR
PNUM KLTH KWORD VLTH VALUE VTYPE

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
Length of the command string, CMDSTR. It is an integer parameter.

CMDSTR
QMF command to run. It is an uppercase character string of the length
specified by CMDLTH.

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 169

PNUM
Number of command keywords. It is an integer parameter.

KLTH
Length of each specified keyword. It is an integer parameter or an array
of integer parameters.

KWORD
QMF keyword or keywords. Each is a character or structure of characters
whose lengths are the same as specified by KLTH. If all the keywords
have the same length, you can use an array of characters.

VLTH
Length of each value associated with the keyword. It is an integer
parameter or an array of integer parameters.

VALUE
Value associated with each keyword. Its type is specified in the VTYPE
parameter, and can be a character, a structure of characters, an integer
parameter, or an array of integer parameters.

VTYPE
QMF data type of the value string VALUE. This type has one of two
values, which are provided in the communications macro, DSQCOMMB:
v DSQ-VARIABLE-CHAR for character values
v DSQ-VARIABLE-FINT for integer values

All of the values specified in the VALUE field must have the data type
specified in VTYPE.

Using ISPF LIBDEF service with COBOL
If you are using a dynamic call to the QMF interface DSQCIB and you want
to use the LIBDEF function in your QMF application, change your dynamic
calls to static calls. For example, change the call identifier statement
CALL DSQCIB USING ...

to its call literal form
CALL "DSQCIB" USING ...

Migration information
The DSQCOMM has changed from Version 2 Release 4 to Version 3.2.
v If you want to continue using the old DSQCOMM, you do not have to

recompile your program.
v If you want to use Version 3.2 of DSQCIB, you must link-edit your Version

2 Release 4 program again.

The new DSQCOMM provides message text that is especially useful if you
have an error in your START command. If you want to use the new

COBOL Language Interface

170 QMF: Developing QMF Applications

DSQCOMM, you need to recompile your program and initialize
DSQ_COMM_LEVEL (in DSQCOMM) to DSQ_CURRENT_COMM_LEVEL. If
you do not set this value, QMF treats your DSQCOMM as a Version 2 Release
4 level.

Note to users of CICS in MVS

The DSQCIB has changed from Version 3 Release 1 Modification 1 to
Version 3 Release 2. The interface between the QMF-supplied function
call and the main QMF program has changed from a CALL interface to
an EXEC CICS LINK interface. The new interface provides better
isolation from the user program and the QMF product. Because the
interface has changed, you need to link-edit your programs again that
used the callable interface.

COBOL programming example
The following program, DSQABFCO, is shipped with the QMF product. This
example uses VS COBOL II.

You can look at the sample source code listing here or you can access it
online.
v For OS/390, the sample program is a member of the library

QMF720.SDSQSAPE.
v For VM, the sample program is on the production disk.
v For VSE, the sample program is located in the QMF sublibrary and is

named DSQABFCO.Z.

The sample program for the COBOL callable interface performs the following
function:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses
these objects.

This section also shows how to compile, link-edit, and run a COBOL program
using the callable interface. QMF does not ship the REXX EXEC, JCL, or
CLIST in these examples, but you can copy them from here, altering them to
suit your installation.

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 171

**
* The following is a VS COBOL II version of the query
* callable interface *** DSQABFCO **.
**
IDENTIFICATION DIVISION.
PROGRAM-ID. DSQABFCO.

DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Copy DSQCOMMB definition - contains query interface variables

COPY DSQCOMMB.

* Query interface commands
01 STARTQI PIC X(5) VALUE "START".
01 SETG PIC X(10) VALUE "SET GLOBAL".
01 QUERY PIC X(12) VALUE "RUN QUERY Q1".
01 REPT PIC X(22) VALUE "PRINT REPORT (FORM=F1 ".
01 ENDQI PIC X(4) VALUE "EXIT".

* Query command length
01 QICLTH PIC 9(8) USAGE IS COMP-4.
* Number of variables
01 QIPNUM PIC 9(8) USAGE IS COMP-4.
* Keyword variable lengths
01 QIKLTHS.

03 KLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.
* Value Lengths
01 QIVLTHS.

03 VLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.
* Start Command Keyword
01 SNAMES.

03 SNAME1 PIC X(8) VALUE "DSQSMODE".
* Start Command Keyword Value
01 SVALUES.

03 SVALUE1 PIC X(11) VALUE "INTERACTIVE".
* Set GLOBAL Command Variable Names to set
01 VNAMES.

03 VNAME1 PIC X(7) VALUE "MYVAR01".
03 VNAME2 PIC X(5) VALUE "SHORT".
03 VNAME3 PIC X(7) VALUE "MYVAR03".

* Variable value parameters
01 VVALUES.

03 VVALS PIC 9(8) OCCURS 10 USAGE IS COMP-4.

01 TEMP PIC 9(8) USAGE IS COMP-4.

Figure 44. DSQABFCO, sample COBOL program (Part 1 of 2)

COBOL Language Interface

172 QMF: Developing QMF Applications

For CICS, the STOP RUN statement must be changed to a GOBACK
statement.

DSQCOMM for COBOL
This include file is called DSQCOMMB and is shipped with QMF.

PROCEDURE DIVISION.
*
* Start a query interface session

MOVE DSQ-CURRENT-COMM-LEVEL TO DSQ-COMM-LEVEL.
MOVE 5 TO QICLTH.
MOVE 8 TO KLTHS(1).
MOVE 11 TO VLTHS(1).
MOVE 1 TO QIPNUM.
CALL DSQCIB USING DSQCOMM, QICLTH, STARTQI,

QIPNUM, QIKLTHS, SNAMES,
QIVLTHS, SVALUES, DSQ-VARIABLE-CHAR.

*
* Set numeric values into query variables using SET GLOBAL command

MOVE 10 TO QICLTH.
MOVE 7 TO KLTHS(1).
MOVE 5 TO KLTHS(2).
MOVE 7 TO KLTHS(3).
MOVE 4 TO VLTHS(1).
MOVE 4 TO VLTHS(2).
MOVE 4 TO VLTHS(3).
MOVE 20 TO VVALS(1).
MOVE 40 TO VVALS(2).
MOVE 84 TO VVALS(3).
MOVE 3 TO QIPNUM.
CALL DSQCIB USING DSQCOMM, QICLTH, SETG,

QIPNUM, QIKLTHS, VNAMES,
QIVLTHS, VVALUES, DSQ-VARIABLE-FINT.

*
* Run a Query

MOVE 12 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, QUERY.

*
* Print the results of the query

MOVE 22 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, REPT.

*
* End the query interface session

MOVE 4 TO QICLTH.
CALL DSQCIB USING DSQCOMM, QICLTH, ENDQI.

STOP RUN.

Figure 44. DSQABFCO, sample COBOL program (Part 2 of 2)

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 173

*** 00001000
* COBOL INCLUDE FOR QUERY CALLABLE INTERFACE (MVS/VM) 00002000
*** 00003000

00004000
* STRUCTURE DECLARE FOR COMMUNICATIONS AREA 00005000

00006000
01 DSQCOMM. 00007000

00008000
03 DSQ-RETURN-CODE PIC 9(8) USAGE IS COMP. 00009000

* FUNCTION RETURN CODE * 00010000
03 DSQ-INSTANCE-ID PIC 9(8) USAGE IS COMP. 00011000

* IDENTIFIER FROM START CMD * 00012000
03 DSQ-COMM-LEVEL PIC X(12). 00013000

* COMMUNICATIONS LEVEL * 00014000
03 DSQ-PRODUCT PIC X(2). 00015000

* QUERY PRODUCT ID * 00016000
03 DSQ-PRODUCT-RELEASE PIC X(2). 00017000

* QUERY PRODUCT RELEASE * 00018000
03 DSQ-RESERVE1 PIC X(28). 00019000

* RESERVED AREA * 00020000
03 DSQ-MESSAGE-ID PIC X(8). 00021000

* COMPLETION MESSAGE ID * 00022000
03 DSQ-Q-MESSAGE-ID PIC X(8). 00023000

* QUERY MESSAGE ID * 00024000
03 DSQ-START-PARM-ERROR PIC X(8). 00025000

* START PARAMETER IN ERROR * 00026000
03 DSQ-CANCEL-IND PIC X(1). 00027000

* 1 = COMMAND CANCELLED * 00028000
* 0 = COMMAND NOT CANCELLED * 00029000

03 DSQ-RESERVE2 PIC X(23). 00030000
* RESERVED AREA * 00031000

03 DSQ-RESERVE3 PIC X(156). 00032000
* RESERVED AREA * 00033000

03 DSQ-MESSAGE-TEXT PIC X(128). 00034000
* QMF MESSAGE TEXT * 00035000

03 DSQ-Q-MESSAGE-TEXT PIC X(128). 00036000
* QMF QUERY MESSAGE TEXT * 00037000
* 512 BYTES TOTAL * 00038000

00039000
00040000

* VALUES FOR DSQ-RETURN-CODE 00041000
00042000

01 DSQ-SUCCESS PIC 9(8) USAGE IS COMP VALUE 0. 00043000
01 DSQ-WARNING PIC 9(8) USAGE IS COMP VALUE 4. 00044000
01 DSQ-FAILURE PIC 9(8) USAGE IS COMP VALUE 8. 00045000
01 DSQ-SEVERE PIC 9(8) USAGE IS COMP VALUE 16. 00046000

00047000
* VALUES FOR DSQ-INSTANCE-ID 00048000

00049000
01 DSQ-CONTINUE PIC 9(8) USAGE IS COMP VALUE 0. 00050000

Figure 45. DSQCOMMB, COBOL communications area (Part 1 of 2)

COBOL Language Interface

174 QMF: Developing QMF Applications

Considerations for running your COBOL callable interface program
When you translate, compile, and link-edit a program that uses the QMF
callable interface, consider the following:
v Execution environment

00051000
* VALUES FOR DSQ-COMM-LEVEL 00052000

00053000
01 DSQ-CURRENT-COMM-LEVEL PIC X(12) VALUE "DSQL>001002<". 00054000

00055000
* VALUES FOR DSQ-PRODUCT 00056000

00057000
01 DSQ-QRW PIC X(2) VALUE "01". 00058000
01 DSQ-QMF PIC X(2) VALUE "02". 00059000
01 DSQ-QM4 PIC X(2) VALUE "03". 00060000

00061000
* VALUES FOR DSQ-PRODUCT-RELEASE 00062000

00063000
01 DSQ-QRW-V1R2 PIC X(2) VALUE "01". 00064000
01 DSQ-QRW-V1R3 PIC X(2) VALUE "02". 00065000
01 DSQ-QMF-V2R4 PIC X(2) VALUE "01". 00066000
01 DSQ-QMF-V3R1 PIC X(2) VALUE "02". 00067000
01 DSQ-QMF-V3R1M1 PIC X(2) VALUE "03". 00068000
01 DSQ-QMF-V3R2 PIC X(2) VALUE "04". 00069000
01 DSQ-QMF-V3R3 PIC X(2) VALUE "05". 00070000
01 DSQ-QMF-V6R1 PIC X(2) VALUE "06". 00071000
01 DSQ-QM4-V1R1 PIC X(2) VALUE "01". 00072000

00073000
* VALUES FOR DSQ-CANCEL-INDE 00074000

00075000
01 DSQ-CANCEL-YES PIC X(1) VALUE "1". 00076000
01 DSQ-CANCEL-NO PIC X(1) VALUE "0". 00077000

00078000
* VALUES FOR MODE 00079000

00080000
01 DSQ-INTERACTIVE PIC X(1) VALUE "1". 00081000
01 DSQ-BATCH PIC X(1) VALUE "2". 00082000

00083000
* VALUES YES AND NO 00084000

00085000
01 DSQ-YES PIC X(1) VALUE "1". 00086000
01 DSQ-NO PIC X(1) VALUE "2". 00087000

00088000
* CALLABLE INTERFACE PROGRAM NAME 00089000

00090000
01 DSQCIB PIC X(6) VALUE "DSQCIB". 00091000

00092000
* VALUES FOR VARIABLE TYPE ON CALL PARAMETER 00093000

00094000
01 DSQ-VARIABLE-CHAR PIC X(4) VALUE "CHAR". 00095000
01 DSQ-VARIABLE-FINT PIC X(4) VALUE "FINT". 00096000

Figure 45. DSQCOMMB, COBOL communications area (Part 2 of 2)

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 175

QMF is run as an assembler subprogram in the COBOL environment. Your
COBOL program must CALL the QMF interface program DSQCIB using a
COBOL dynamic call.

v Quotation marks or apostrophes?
You must use either quotes (") or apostrophes (’) to delimit literals in a
COBOL program. You can specify the delimiter of your choice to the CICS
translation process and the COBOL compiler by specifying QUOTE or APOST.
Make sure the APOST or QUOTE option in effect for the COBOL compiler
matches that of the CICS translator.
The communications area DSQCOMMB and the sample COBOL program
DSQABFCO as distributed by QMF uses quotes to delimit literals. If your
installation or program uses apostrophes instead, change DSQCOMMB as
distributed by QMF or copy the structure to your program, changing quotes
to apostrophes.

v The communications macro DSQCOMMB
The communications area DSQCOMMB must be available to the COBOL
compile step or copied into your program as a control structure.

v The interface module DSQCIB
The QMF interface module must be available during the link-edit phase of
your program.

Running your COBOL programs in CICS
After you write your program, you need to translate, compile, and link-edit it
as required before you can run it. The programs listed in this section show the
steps necessary to do so.

QMF does not ship the REXX EXEC, JCL, or CLIST in these examples, but
you can copy them from here, altering them to suit your installation.

Translating, compiling, and link-editing for CICS in MVS
The following example shows the CICS supplied procedure DFHEBTVL,
which supports COBOL. See the CICS library for details on how to translate
programs for use in CICS.

COBOL Language Interface

176 QMF: Developing QMF Applications

Translating, compiling, and link-editing for CICS in VSE
The VSE job control in Figure 47 on page 178 is an example of installing a
COBOL program into CICS running on VSE. See the CICS library for details
on how to translate and compile your COBOL programs.

This example, shipped with QMF, is located in the QMF sublibrary and is
named DSQ3CICO.Z.

//samCOBOL JOB
// EXEC PROC=DFHEBTVL
//TRN.SYSIN DD *
*CBL XOPTS(CICS translator options ...QUOTE COBOL2)

.
Your program or copy of QMF sample DSQABFCO
.

/*
//* Provide Access to QMF Communications Macro DSQCOMMB
//COB.SYSLIB DD DSN=QMF720.SDSQSAPE,DISP=SHR
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD(DFHECI)
INCLUDE QMFLOAD(DSQCIB)
ORDER DFHECI
ENTRY samCOBOL
MODE AMODE(31) RMODE(ANY)
NAME samCOBOL(R)

/*

Figure 46. JCL to run the CICS translator, COBOL compiler, and linkage editor

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 177

* $$ JOB JNM=DSQ3CICO,DISP=D,CLASS=0
// JOB DSQ3CICO Sample job to Install QMF Callable Interface (COBOL)
* --
* Install QMF Callable Interface Example (COBOL)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
* ---
// DLBL IJSYSPH,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSPCH,,1,0,&START,&SIZE
ASSGN SYSPCH,DISK,VOL=&VOLID,SHR
* Library search chain must contain the QMF, CICS and COBOL sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate callable interface program (COBOL)
* ---
* You may need to update or remove the SLI statement for your program.
* ---
// EXEC DFHECP1$,SIZE=256K,PARM=’XOPTS(CICS,QUOTE)’
* $$ SLI MEM=DSQABFCO.Z,S=PRD2.PROD
/*
* ---
* Step 2: Compile callable interface program (COBOL)
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID,SHR
// OPTION NODECK,CATAL

PHASE DSQABFCO,*
INCLUDE DFHECI

// EXEC IGYCRCTL,PARM=’SZ(MAX),OBJECT,MAP,RES,NODYNAM,QUOTE,LIB,RENT’
CLOSE SYSIPT,SYSRDR
/*
* ---
* Step 3: Link-edit callable interface program (COBOL)
* ---
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
* $$ EOJ

Figure 47. Job control to run the CICS/VSE translator, COBOL compiler, and linkage editor

COBOL Language Interface

178 QMF: Developing QMF Applications

Compiling and running your programs under CMS in VM
The following program compiles and runs your callable interface application
using the IBM COBOL compiler.

QMF does not ship the REXX EXEC in this example, but you can copy it from
here, altering it to suit your installation.

/**/
/* Compile your COBOL program and run it. */
/**/
TRACE off
ADDRESS CMS
/**/
/* Access COBOL product disk using a program, PRODUCT, that you */
/* write. */
/**/
"EXEC PRODUCT COBOL"
/**/
/* Get QMF DSQCOMM into a macro library and set GLOBAL compile */
/* maclibs.
/**/
"ERASE TEMPP MACLIB A"
"MACLIB GEN TEMPP DSQCOMMB"
Maclist = "TEMPP VSC2MAC COB2MLIB COB2PLIB DMSSP CMSLIB OSMACRO"
"GLOBAL MACLIB" Maclist
/**/
/* Compile the program */
/**/
"GLOBAL TXTLIB SCEELKED"
"COBOL2 yourname (LIB RESIDENT LIST RENT DYNAM"

Figure 48. Program for compiling and running COBOL in CMS (Part 1 of 2)

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 179

Running your COBOL programs in TSO
The following sections provide sample JCL to run the COBOL compiler and
linkage editor and sample programs for running your complied programs in
TSO either with or without ISPF.

Compiling and link-editing in TSO
The following job uses the COBOL compiler to compile your callable interface
application. It then link-edits your application. Some parameters might vary
from one installation to the next. See your QMF administrator for details.

/**/
/* Access SQL/DS and initialize database */
/**/
"EXEC PRODUCT SQLDS"
"EXEC SQLINIT DBNAME(SQLDBA)"
/**/
/* Access GDDM product disk */
/**/
"EXEC PRODUCT GDDM"
/**/
/* Issue Filedefs for QMF product */
/**/
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 133 BLKSIZE 133 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"
/**/
/* Provide access to QMF and COBOL program libraries */
/**/
"GLOBAL LOADLIB DSQLDLIB VSC2LOAD"
"GLOBAL TXTLIB VSC2LTXT ADMRLIB ADMPLIB ADMGLIB SCEELKED"
Say "Starting to run COBOL program"
"RUN yourname"
Exit 0

Figure 48. Program for compiling and running COBOL in CMS (Part 2 of 2)

COBOL Language Interface

180 QMF: Developing QMF Applications

Running your programs in TSO without ISPF
After you successfully compile your program, you can run it by writing a
program similar to the following:

//samCOBOL JOB
//STEP1 EXEC PROC=IGYWCL
//* Provide Access to QMF Communications Macro DSQCOMM
//COBOL.SYSLIB DD DSN=QMF720.SAMPLIB,DISP=SHR
//COBOL.SYSIN DD *

.
Your program or copy of QMF sample DSQABFCO
.

/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIB)
ENTRY samCOBOL
MODE AMODE(31) RMODE(ANY)
NAME samCOBOL(R)

/*

Figure 49. JCL to run the COBOL compiler and linkage editor

COBOL Language Interface

Appendix A. Sample Code for Callable Interface Languages 181

Running your programs in TSO under ISPF
After you successfully compile your program, you can run it by writing a
program similar to the following:

PROC 0
CONTROL ASIS
/**/
/* Note: QMF, DB2, GDDM and COBOL load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF720.SDSQLOAD". */
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program using TSO CALL command */
/**/
CALL samCOBOL
EXIT CODE(0)

Figure 50. JCL to run the COBOL compiler and linkage editor

COBOL Language Interface

182 QMF: Developing QMF Applications

The EXIT CODE(4) suppresses the showing of the ISPF disposition panel.

PROC 0
CONTROL ASIS
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’,’ISR.ISRCLIB’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* Datasets used by ISPF */
/**/
ALLOC FI(ISPLLIB) SHR REUSE +

DA(’QMF720.SDSQLOAD’,’ADM.GDDMLOAD’,’DSN.DSNEXIT’,’DSN.DSNLOAD’, +
’PRDUCT.COB2LIB’)

ALLOC FI(ISPMLIB) SHR REUSE +
DA(’QMF720.SDSQMLBE’,’ISR.ISRMLIB’,’ISP.ISPMLIB’)

ALLOC FI(ISPPLIB) SHR REUSE +
DA(’QMF720.SDSQPLBE’,’ISR.ISRPLIB’,’ISP.ISPPLIB’)

ALLOC FI(ISPSLIB) SHR REUSE +
DA(’QMF720.SDSQSLBE’,’ISR.ISRSLIB’,’ISP.ISPSLIB’)

ALLOC FI(ISPTLIB) SHR REUSE +
DA(’ISR.ISRTLIB’,’ISP.ISPTLIB’)

/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program as the initial ISPF dialog */
/**/
ISPSTART PGM(samCOBOL) NEWAPPL(DSQE)
EXIT CODE(4)

Figure 51. CLIST for running your program in TSO under ISPF

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 183

FORTRAN language interface

The FORTRAN callable interface corresponds to that provided for other SAA
languages.

Note to CICS users
Because FORTRAN is not available under CICS, the QMF callable
interface for FORTRAN does not work under CICS.

Interface communications area mapping for FORTRAN (DSQCOMMF)
DSQCOMMF provides DSQCOMM mapping for FORTRAN and is shipped
with the product. Table 18 shows the information for DSQCOMMF, which you
must not alter:

Table 18. Interface communications area, DSQCOMMF

Structure Name Data Type Description

DSQ_RETURN_CODE INTEGER Indicates the status of a QMF command after it
has been run. Its values are:

DSQ_SUCCESS
Successful execution of the request.

DSQ_WARNING
Normal completion with warnings.

DSQ_FAILURE
Command did not run correctly.

DSQ_SEVERE
Severe error; QMF session terminated.

DSQ_INSTANCE_ID INTEGER Identifier established by QMF during execution
of the START command

DSQ_COMM_LEVEL CHARACTER(12) Identifies the level of the DSQCOMM. You
should set this to the value of
DSQ_CURRENT_COMM_LEVEL before issuing
the QMF START command.

DSQ_PRODUCT CHARACTER(2) Identifies the IBM query product in use.

DSQ_PRODUCT_RELEASE CHARACTER(2) Identifies the release level of the query product
in use.

DSQ_RESERVE1 CHARACTER(28) Reserved for future use

DSQ_MESSAGE_ID CHARACTER(8) Completion message ID

DSQ_Q_MESSAGE_ID CHARACTER(8) Query message ID

DSQ_START_PARM_ERROR CHARACTER(8) Parameter in error when START failed due to a
parameter error

FORTRAN Language Interface

184 QMF: Developing QMF Applications

Table 18. Interface communications area, DSQCOMMF (continued)

Structure Name Data Type Description

DSQ_CANCEL_IND CHARACTER(1) Contains one of two values, depending if the
user canceled while a QMF command was
running:

DSQ_CANCEL_YES
CHARACTER(1)

DSQ_CANCEL_NO
CHARACTER(1)

DSQ_RESERVE2 CHARACTER(23) Reserved for future use

DSQ_RESERVE3 CHARACTER(156) Reserved for future use

DSQ_MESSAGE_TEXT CHARACTER(128) Completion message text

DSQ_Q_MESSAGE_TEXT CHARACTER(128) Query message text

Function calls for FORTRAN
QMF provides two function calls for the FORTRAN language: DSQCIF and
DSQCIFE. Both calls are described in the communications macro
DSQCOMMF.

DSQCIF
This call is for QMF commands that do not require access to application
program variables. Use this call for most QMF commands.
RC = DSQCIF(DSQCOMM,
+ CMDLTH,
+ CMDSTR)

The parameters have the following values:

DSQCOMM
The communications area

CMDLTH
Length of the command string, CMDSTR. It is an integer parameter.

CMDSTR
QMF command to run. It is an uppercase character string of the length
specified by CMDLTH.

DSQCIFE
This call has an extended syntax for the three commands that require access to
application program variables: START and the extended formats of GET
GLOBAL and SET GLOBAL.

The syntax for this call is:

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 185

RC = DSQCIFE(DSQCOMM,
+ CMDLTH,
+ CMDSTR,
+ PNUM,
+ KLTH,
+ KWORD,
+ VLTH,
+ VALUE,
+ VTYPE)

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
Length of the command string, CMDSTR; it is an integer parameter.

CMDSTR
QMF command to run. It is an uppercase character string of the length
specified by CMDLTH.

PNUM
Number of command keywords. It is an integer parameter.

KLTH
Length of each specified keyword. It is an integer parameter or parameter
array.

KWORD
QMF keyword or keywords. It is a character or structure of characters
whose lengths are the same as specified by KLTH. You can use an array of

v DSQ_VARIABLE_FINT for integer values.

All of the values specified in the VALUE field must have the data type
specified in VTYPE.

FORTRAN programming example
The following program, DSQABFF, is shipped with QMF and uses VS
FORTRAN.

You can look at the sample source code listing here or you can access it
online. For OS/390, the sample program is a member of the library
QMF720.SDSQSAPE. For VM, the sample program is on the production disk.

The sample program for the FORTRAN callable interface performs the
following function:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses
these objects.

This section also shows how to compile, link-edit, and run a FORTRAN
program using the callable interface. QMF does not ship the REXX EXEC, JCL,
or CLIST in these examples, but you can copy them from here, altering them
to suit your installation.

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 187

C***
C Sample Program: dsqabff
C FORTRAN Version of SAA Query Manager Callable Interface
C
C Creation Date: 11/21/89
C
C ENVIRONMENT: API IN FORTRAN
C***
C
C Processing:
C a. Start a Query Manager Session using the Callable Interface.
C
C b. Set Global Query Manager numeric variables.
C
C d. Run a Query Manager query using the Callable Interface.
C
C e. Print a report using the Callable Interface.
C
C f. Exit the Query Manager Session.
C

Figure 52. DSQABFF, sample FORTRAN program (Part 1 of 5)

FORTRAN Language Interface

188 QMF: Developing QMF Applications

C Prerequisites:1. Create the SAMPLE database.
C
C 2. Create a prompted query, Q1, which has a SELECT state
C
C 3. Create a form, F1, that displays data for query Q1.
C
C***

PROGRAM DSQABFF

C***
C Include and declare query interface communications area
C***

INCLUDE (DSQCOMMF)

C**
C Query interface command lengths and commands
C**

INTEGER COMMAND_LENGTH
CHARACTER START_QUERY_INTERFACE*5,
+ SET_GLOBAL_VARIABLES*10,
+ RUN_QUERY*12,
+ PRINT_REPORT*22,
+ END_QUERY_INTERFACE*4

C**
C Query command extension, number of parameters and lengths
C**

INTEGER NUMBER_OF_PARAMETERS,
+ KEYWORD_LENGTHS(10),
+ DATA_LENGTHS(10)

C**
C Variable data type constants
C**

CHARACTER CHAR_DATA_TYPE*4,
+ INT_DATA_TYPE*4

C**
C Keyword parameter and value for START command
C**

CHARACTER*8 START_KEYWORDS(1)
CHARACTER*11 START_KEYWORD_VALUES(1)

Figure 52. DSQABFF, sample FORTRAN program (Part 2 of 5)

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 189

C**
C Keyword parameter and values for SET command
C**

CHARACTER SET_KEYWORDS(19)
CHARACTER SET_KEYWORD_1*7,
+ SET_KEYWORD_2*5,
+ SET_KEYWORD_3*7

EQUIVALENCE (SET_KEYWORDS(1), SET_KEYWORD_1),
+ (SET_KEYWORDS(8), SET_KEYWORD_2),
+ (SET_KEYWORDS(13), SET_KEYWORD_3)

CHARACTER SET_VALUES(12)
INTEGER*4 SET_VALUE_1,
+ SET_VALUE_2,
+ SET_VALUE_3

EQUIVALENCE (SET_VALUES(1), SET_VALUE_1),
+ (SET_VALUES(5), SET_VALUE_2),
+ (SET_VALUES(9), SET_VALUE_3)

C***
C Declare command length and return code variables
C***

INTEGER LEN,
+ RC

C***
C Initialization
C***

DATA START_QUERY_INTERFACE /’START’ /
DATA SET_GLOBAL_VARIABLES /’SET GLOBAL’ /
DATA RUN_QUERY /’RUN QUERY Q1’ /
DATA PRINT_REPORT /’PRINT REPORT (FORM=F1)’/
DATA END_QUERY_INTERFACE /’EXIT’ /

DATA CHAR_DATA_TYPE /DSQ_VARIABLE_CHAR /
DATA INT_DATA_TYPE /DSQ_VARIABLE_FINT /

Figure 52. DSQABFF, sample FORTRAN program (Part 3 of 5)

FORTRAN Language Interface

190 QMF: Developing QMF Applications

C**
C Start Query Session
C**

DSQ_COMM_LEVEL = DSQ_CURRENT_COMM_LEVEL
NUMBER_OF_PARAMETERS = 1
COMMAND_LENGTH = LEN(START_QUERY_INTERFACE)
KEYWORD_LENGTHS(1) = LEN(START_KEYWORDS(1))
DATA_LENGTHS(1) = LEN(START_KEYWORD_VALUES(1))
START_KEYWORDS(1) = ’DSQSMODE’
START_KEYWORD_VALUES(1) = ’INTERACTIVE’

RC = DSQCIFE(DSQCOMM,
+ COMMAND_LENGTH,
+ START_QUERY_INTERFACE,
+ NUMBER_OF_PARAMETERS,
+ KEYWORD_LENGTHS,
+ START_KEYWORDS,
+ DATA_LENGTHS,
+ START_KEYWORD_VALUES,
+ CHAR_DATA_TYPE)

C**
C Set numeric values into query using SET command
C**

NUMBER_OF_PARAMETERS = 3
COMMAND_LENGTH = LEN(SET_GLOBAL_VARIABLES)
SET_KEYWORD_1 = ’MYVAR01’
SET_KEYWORD_2 = ’SHORT’
SET_KEYWORD_3 = ’MYVAR03’
KEYWORD_LENGTHS(1) = LEN(SET_KEYWORD_1)
KEYWORD_LENGTHS(2) = LEN(SET_KEYWORD_2)
KEYWORD_LENGTHS(3) = LEN(SET_KEYWORD_3)
DATA_LENGTHS(1) = 4
DATA_LENGTHS(2) = 4
DATA_LENGTHS(3) = 4
SET_VALUE_1 = 20
SET_VALUE_2 = 40
SET_VALUE_3 = 84

RC = DSQCIFE(DSQCOMM,
+ COMMAND_LENGTH,
+ SET_GLOBAL_VARIABLES,
+ NUMBER_OF_PARAMETERS,
+ KEYWORD_LENGTHS,
+ SET_KEYWORDS,
+ DATA_LENGTHS,
+ SET_VALUES,
+ INT_DATA_TYPE)

Figure 52. DSQABFF, sample FORTRAN program (Part 4 of 5)

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 191

DSQCOMM for FORTRAN
This file, called DSQCOMMF, is shipped with QMF.

C**
C Run a query
C**

COMMAND_LENGTH = LEN(RUN_QUERY)
RC = DSQCIF(DSQCOMM,
+ COMMAND_LENGTH,
+ RUN_QUERY)

C**
C Print the results of the query
C**

COMMAND_LENGTH = LEN(PRINT_REPORT)
RC = DSQCIF(DSQCOMM,
+ COMMAND_LENGTH,
+ PRINT_REPORT)

C**
C End the query interface session
C**

COMMAND_LENGTH = LEN(END_QUERY_INTERFACE)
RC = DSQCIF(DSQCOMM,
+ COMMAND_LENGTH,
+ END_QUERY_INTERFACE)

END

Figure 52. DSQABFF, sample FORTRAN program (Part 5 of 5)

FORTRAN Language Interface

192 QMF: Developing QMF Applications

C** 00001000
C FORTRAN include file for Callable Interface (MVS/VM) 00002000
C** 00003000
C Return codes 00004000

INTEGER DSQ_SUCCESS, DSQ_WARNING, DSQ_FAILURE, DSQ_SEVERE 00005000
PARAMETER(00006000
+ DSQ_SUCCESS = 0, 00007000
+ DSQ_WARNING = 4, 00008000
+ DSQ_FAILURE = 8, 00009000
+ DSQ_SEVERE = 16) 00010000

00011000
C Communications level 00012000

CHARACTER DSQ_CURRENT_COMM_LEVEL*12 00013000
PARAMETER(00014000
+ DSQ_CURRENT_COMM_LEVEL = ’DSQL>001002<’) 00015000

00016000
C Query product IDs 00017000

CHARACTER DSQ_QRW*2, DSQ_QMF*2, DSQ_QM4*2 00018000
PARAMETER(00019000
+ DSQ_QRW = ’01’, 00020000
+ DSQ_QMF = ’02’, 00021000
+ DSQ_QM4 = ’03’) 00022000

00023000
C Query product release levels 00024000

CHARACTER DSQ_QRW_V1R2*2, DSQ_QRW_V1R3*2, 00025000
+ DSQ_QMF_V2R4*2, DSQ_QMF_V3R1*2, 00026000
+ DSQ_QMF_V3R1M1*2, DSQ_QMF_V3R2*2, 00027000
+ DSQ_QMF_V3R3*2, DSQ_QMF_V6R1*2, 00028000
+ DSQ_QM4_V1R1*2 00029000
PARAMETER(00030000
+ DSQ_QRW_V1R2 = ’01’, 00031000
+ DSQ_QRW_V1R3 = ’02’, 00032000
+ DSQ_QMF_V2R4 = ’01’, 00033000
+ DSQ_QMF_V3R1 = ’02’, 00034000
+ DSQ_QMF_V3R1M1 = ’03’, 00035000
+ DSQ_QMF_V3R2 = ’04’, 00036000
+ DSQ_QMF_V3R3 = ’05’, 00037000
+ DSQ_QMF_V6R1 = ’06’, 00038000
+ DSQ_QM4_V1R1 = ’01’) 00039000

00040000
C Host variable types 00041000

CHARACTER DSQ_VARIABLE_CHAR*4, DSQ_VARIABLE_FINT*4 00042000
PARAMETER(00043000
+ DSQ_VARIABLE_CHAR = ’CHAR’, 00044000
+ DSQ_VARIABLE_FINT = ’FINT’) 00045000

00046000
C Cancel indicator 00047000

CHARACTER DSQ_CANCEL_YES, DSQ_CANCEL_NO 00048000
PARAMETER(00049000
+ DSQ_CANCEL_YES = ’1’, 00050000
+ DSQ_CANCEL_NO = ’0’) 00051000

00052000
CHARACTER DSQCOMM(512) 00053000

Figure 53. DSQCOMMF, FORTRAN communications area (Part 1 of 2)

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 193

Compiling and running your programs under CMS in VM
The following program compiles and runs your callable interface application
using the VS FORTRAN compiler. QMF does not ship the REXX EXEC in this
example, but you can copy it from here, altering it to suit your installation.

INTEGER DSQ_RETURN_CODE, DSQ_INSTANCE_ID 00054000
CHARACTER DSQ_COMM_LEVEL*12, 00055000
+ DSQ_PRODUCT*2, 00056000
+ DSQ_PRODUCT_RELEASE*2, 00057000
+ DSQ_RESERVE1*28, 00058000
+ DSQ_MESSAGE_ID*8, 00059000
+ DSQ_Q_MESSAGE_ID*8, 00060000
+ DSQ_START_PARM_ERROR*8, 00061000
+ DSQ_CANCEL_IND*1, 00062000
+ DSQ_RESERVE2*23, 00063000
+ DSQ_RESERVE3*156, 00064000
+ DSQ_MESSAGE_TEXT*128, 00065000
+ DSQ_Q_MESSAGE_TEXT*128 00066000

00067000
EQUIVALENCE (DSQCOMM(1), DSQ_RETURN_CODE), 00068000
+ (DSQCOMM(5), DSQ_INSTANCE_ID), 00069000
+ (DSQCOMM(9), DSQ_COMM_LEVEL), 00070000
+ (DSQCOMM(21), DSQ_PRODUCT), 00071000
+ (DSQCOMM(23), DSQ_PRODUCT_RELEASE), 00072000
+ (DSQCOMM(25), DSQ_RESERVE1), 00073000
+ (DSQCOMM(53), DSQ_MESSAGE_ID), 00074000
+ (DSQCOMM(61), DSQ_Q_MESSAGE_ID), 00075000
+ (DSQCOMM(69), DSQ_START_PARM_ERROR), 00076000
+ (DSQCOMM(77), DSQ_CANCEL_IND), 00077000
+ (DSQCOMM(78), DSQ_RESERVE2), 00078000
+ (DSQCOMM(101), DSQ_RESERVE3), 00079000
+ (DSQCOMM(257), DSQ_MESSAGE_TEXT), 00080000
+ (DSQCOMM(385), DSQ_Q_MESSAGE_TEXT) 00081000

00082000
C Callable Interface Normal and Extended Calls 00083000

EXTERNAL DSQCIF 00084000
EXTERNAL DSQCIFE 00085000

Figure 53. DSQCOMMF, FORTRAN communications area (Part 2 of 2)

FORTRAN Language Interface

194 QMF: Developing QMF Applications

/**/
/* Compile your program and run it. */
/**/
TRACE off
ADDRESS CMS

/**/
/* Access FORTRAN product disk using a program, PRODUCT, that you */
/* write. */
/**/
"EXEC PRODUCT FORTRAN"

/**/
/* Get QMF DSQCOMM into a macro library and set GLOBAL compile */
/* maclibs.
/**/
"ERASE TEMPP MACLIB A"
"MACLIB GEN TEMPP DSQCOMMF"
Maclist = "TEMPP VSF2PLIB VSF2MLIB DMSSP CMSLIB OSMACRO"
"GLOBAL MACLIB" Maclist

/**/
/* Compile the program */
/**/
’FORTVS2 yourname (RENT OPT(0) XREF’

/**/
/* Access SQL/DS and initialize database */
/**/
"EXEC PRODUCT SQLDS"
"EXEC SQLINIT DBNAME(SQLDBA)"

/**/
/* Access GDDM product disk */
/**/
"EXEC PRODUCT GDDM"

Figure 54. REXX program to compile and run your program (Part 1 of 2)

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 195

You might have to modify this program to suit your installation.

Running your programs under TSO in MVS
After you write your program, you need to compile and link-edit it as
required before you can run it. The programs listed in this section show the
steps necessary to do so.

QMF does not ship the REXX EXEC, JCL, or CLIST in these examples, but
you can copy them from here, altering them to suit your installation.

Compiling and link-editing in TSO
The following job compiles and link-edits your callable interface application
using the VS FORTRAN compiler for MVS. Some parameters can vary from
one installation to the next. See your QMF administrator for details.

/**/
/* Issue Filedefs for QMF product */
/**/
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 133 BLKSIZE 133 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"

/**/
/* Provide access to QMF and FORTRAN program libraries */
/**/
’GLOBAL LOADLIB VSF2LOAD DSQLDLIB’
’GLOBAL TXTLIB VSF2LINK VSF2FORT ADMRLIB ADMPLIB ADMGLIB’
Say "Starting to run FORTRAN program"
"RUN yourname"

Exit 0

Figure 54. REXX program to compile and run your program (Part 2 of 2)

FORTRAN Language Interface

196 QMF: Developing QMF Applications

Running your programs in TSO without ISPF
The following program runs your callable interface application using the VS
FORTRAN compiler. Some parameters can vary from one installation to the
next. See your QMF administrator for details.

//samFORT JOB
//STEP1 EXEC PROC=VSF2CL
//* Provide Access to QMF Communications Macro DSQCOMM
//FORT.SYSLIB DD DSN=QMF720.SAMPLIB,DISP=SHR
//FORT.SYSIN DD *

.
Your program or copy of QMF sample DSQABFF
.

/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIF)
INCLUDE QMFLOAD(DSQCIFE)
ENTRY samFORT
MODE AMODE(31) RMODE(ANY)
NAME samFORT(R)

/*

Figure 55. JCL for running the FORTRAN compiler and linkage editor

FORTRAN Language Interface

Appendix A. Sample Code for Callable Interface Languages 197

Running in TSO under ISPF
The following program runs your callable interface application using the VS
FORTRAN compiler. Some parameters can vary from one installation to the
next. See your QMF administrator for details.

PROC 0
CONTROL ASIS
/**/
/* Note: QMF, DB2, GDDM and FORTRAN load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF720.SDSQLOAD". */
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program using TSO CALL command */
/**/
CALL samFORT
EXIT CODE(0)

Figure 56. CLIST for running your program in TSO without ISPF

FORTRAN Language Interface

198 QMF: Developing QMF Applications

The EXIT CODE(4) suppresses the showing of the ISPF disposition panel.

PROC 0
CONTROL ASIS
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’,’ISR.ISRCLIB’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* Datasets used by ISPF */
/**/
ALLOC FI(ISPLLIB) SHR REUSE +

DA(’QMF720.SDSQLOAD’,’ADM.GDDMLOAD’,’DSN.DSNEXIT’,’DSN.DSNLOAD’, +
’PRDUCT.VSF2LOAD’)

ALLOC FI(ISPMLIB) SHR REUSE +
DA(’QMF720.SDSQMLBE’,’ISR.ISRMLIB’,’ISP.ISPMLIB’)

ALLOC FI(ISPPLIB) SHR REUSE +
DA(’QMF720.SDSQPLBE’,’ISR.ISRPLIB’,’ISP.ISPPLIB’)

ALLOC FI(ISPSLIB) SHR REUSE +
DA(’QMF720.SDSQSLBE’,’ISR.ISRSLIB’,’ISP.ISPSLIB’)

ALLOC FI(ISPTLIB) SHR REUSE +
DA(’ISR.ISRTLIB’,’ISP.ISPTLIB’)

/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program as the initial ISPF dialog */
/**/
ISPSTART PGM(samFORT) NEWAPPL(DSQE)
EXIT CODE(4)

Figure 57. CLIST for running your program in TSO under ISPF

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 199

PL/I language interface

The PL/I callable interface corresponds to that provided for other SAA
languages.

The minimum release level of PL/I required for use with QMF in CICS is
PL/I Version 2. PL/I Version 2 is not supported in VSE/ESA.

Interface communications area mapping for PL/I (DSQCOMML)
DSQCOMML provides DSQCOMM mapping for PL/I and is shipped with the
product. Table 19 shows the values for DSQCOMML.

Table 19. Interface communications area for DSQCOMML

Structure Name Data Type Description

DSQ_RETURN_CODE FIXED BIN(31) Indicates the status of a QMF command after it
has been run. Its values are:

DSQ_SUCCESS
Successful execution of the request.

DSQ_WARNING
Normal completion with warnings.

DSQ_FAILURE
Command did not run correctly.

DSQ_SEVERE
Severe error; QMF session terminated.

DSQ_INSTANCE_ID FIXED BIN(31) Identifier established by QMF during execution of
the START command

DSQ_COMM_LEVEL CHAR(12) Identifies the level of the DSQCOMM. You should
set this to the value of
DSQ_CURRENT_COMM_LEVEL before issuing
the QMF START command.

DSQ_PRODUCT CHAR(2) Identifies the IBM query product in use.

DSQ_PRODUCT_RELEASE CHAR(2) Identifies the release level of the query product in
use.

DSQ_RESERVE1 CHAR(28) Reserved for future use

DSQ_MESSAGE_ID CHAR(8) Completion message ID

DSQ_Q_MESSAGE_ID CHAR(8) Query message ID

DSQ_START_PARM_ERROR CHAR(8) Parameter in error when START failed due to a
parameter error

DSQ_CANCEL_IND CHAR(1) Contains one of two values, depending if the user
canceled while a QMF command was running:

v DSQ_CANCEL_YES

v DSQ_CANCEL_NO

PL/I Language Interface

200 QMF: Developing QMF Applications

Table 19. Interface communications area for DSQCOMML (continued)

Structure Name Data Type Description

DSQ_RESERVE2 CHAR(23) Reserved for future use

DSQ_RESERVE3 CHAR(156) Reserved for future use

DSQ_MESSAGE_TEXT CHAR(128) Completion message text

DSQ_Q_MESSAGE_TEXT CHAR(128) Query message text

Function calls for PL/I
QMF provides two function calls for PL/I: DSQCIPL and DSQCIPX. Both calls
are described in the communications macro DSQCOMML.

DSQCIPL syntax
This call is for QMF commands that do not require access to application
program variables. Use this call for most QMF commands.
CALL DSQCIPL(DSQCOMM,

CMDLTH,
CMDSTR)

The parameters have the following values:

DSQCOMM
The interface communications area.

CMDLTH
Length of the command string CMDSTR.

CMDSTR
QMF command to run; it is an uppercase character string of the length
specified by CMDLTH.

DSQCIPX Syntax
This call is for the three commands that do require access to application
program variables: START and the extended formats of GET GLOBAL and
SET GLOBAL.

The syntax for this call is:
CALL DSQCIPX(DSQCOMM,

CMDLTH,
CMDSTR,
PNUM,
KLTH,
KWORD,
VLTH,
VALUE,
VTYPE)

The parameters have the following values:

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 201

DSQCOMM
The interface communications area.

CMDLTH
Length of the command string CMDSTR. It is an integer FIXED BIN(31)
parameter.

CMDSTR
QMF command to run. It is an uppercase character string of the length
specified by CMDLTH.

PNUM
Number of command keywords. It is an integer FIXED BIN(31) parameter.

KLTH
Length of each specified keyword. It is an integer FIXED BIN(31)
parameter or parameter array.

KWORD
QMF keyword or keywords. Each is a character or structure of characters
whose lengths are the same as specified by KLTH. You can use an array of
characters, if all of the keywords have the same length. QMF assumes that
the keywords are in contiguous storage and are not separated by any
special separator characters.

VLTH
Length of each value associated with the keyword. It is an integer FIXED
BIN(31) parameter or parameter array.

VALUE
Value associated with each keyword. Its type is specified in the VTYPE
parameter, and can be a character, structure of characters, integer FIXED
BIN(31) parameter, or parameter array. If you have character values, QMF
assumes that the values are in contiguous storage, not separated by any
special separator characters.

VTYPE
QMF data type of the value string VALUE. VTYPE can have one of two
values, which are provided in the communications macro, DSQCOMML:
v DSQ_VARIABLE_CHAR for character values.
v DSQ_VARIABLE_FINT for integer FIXED BIN(31) values

All of the values specified in the VALUE field must have the data type
specified in VTYPE.

Migration information for users of CICS in MVS
The DSQCIPL and DSQCIPLX calls have changed from Version 3 Release 1
Modification 1 to Version 3 Release 2. The interface between the
QMF-supplied function call and the main QMF program has changed from a
CALL interface to an EXEC CICS LINK interface. The new interface provides

PL/I Language Interface

202 QMF: Developing QMF Applications

better isolation from the user program and the QMF product. Because the
interface has changed, if you are migrating from Version 3 Release 1 or earlier,
you need to link-edit your programs again that used the callable interface.

PL/I programming example
The following sample program, DSQABFP, is shipped with QMF and uses
IBM PL/I.

You can look at the sample source code listing here or you can access it
online.
v For VM, the sample program is on the production disk.
v For OS/390, the sample program is a member of the library

QMF720.SDSQSAPE.
v For use with QMF in CICS, the minimum release level of PL/I required is

Version 2. PL/I Version 2 is not supported in VSE/ESA.

The sample program for the PL/I callable interface performs the following
function:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses
these objects.

This section also shows how to compile, link-edit, and run a PL/I program
using the callable interface. QMF does not ship the REXX EXEC, JCL, or
CLIST in these examples, but you can copy them from here, altering them to
suit your installation.

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 203

DSQABFP: PROCEDURE OPTIONS(MAIN REENTRANT) REORDER; 00001000
/**/ 00002000
/* Sample Program: DSQABFP */ 00003000
/* PL/I Version of the SAA Query Callable Interface */ 00004000
/**/ 00005000

00006000
/**/ 00007000
/* Include and declare query interface communications area */ 00008000
/**/ 00009000
%INCLUDE SYSLIB(DSQCOMML); 00010000

00011000
/**/ 00012000
/* Builtin function */ 00013000
/**/ 00014000
DCL LENGTH BUILTIN; 00015000

00016000
/**/ 00017000
/* Query interface command length and commands */ 00018000
/**/ 00019000
DCL COMMAND_LENGTH FIXED BIN(31); 00020000
DCL START_QUERY_INTERFACE CHAR(5) INIT(’START’); 00021000
DCL SET_GLOBAL_VARIABLES CHAR(10) INIT(’SET GLOBAL’); 00022000
DCL RUN_QUERY CHAR(12) INIT(’RUN QUERY Q1’); 00023000
DCL PRINT_REPORT CHAR(22) INIT(’PRINT REPORT (FORM=F1)’); 00024000
DCL END_QUERY_INTERFACE CHAR(4) INIT(’EXIT’); 00025000

00026000
/**/ 00027000
/* Query command extension, number of parameters and lengths */ 00028000
/**/ 00029000
DCL NUMBER_OF_PARAMETERS FIXED BIN(31);/* number of variables */ 00030000
DCL KEYWORD_LENGTHS(10) FIXED BIN(31);/* lengths of keyword names*/ 00031000
DCL DATA_LENGTHS(10) FIXED BIN(31);/* lengths of variable data*/ 00032000

00033000

Figure 58. DSQABFP, sample PL/I program (Part 1 of 3)

PL/I Language Interface

204 QMF: Developing QMF Applications

/**/ 00034000
/* Keyword parameter and value for START command */ 00035000
/**/ 00036000
DCL START_KEYWORDS CHAR(8) INIT(’DSQSMODE’); 00037000
DCL START_KEYWORD_VALUES CHAR(11) INIT(’INTERACTIVE’); 00038000

00039000
/**/ 00040000
/* Keyword parameter and value for SET command */ 00041000
/**/ 00042000
DCL 1 SET_KEYWORDS, 00043000

3 SET_KEYWORDS_1 CHAR(7) INIT(’MYVAR01’), 00044000
3 SET_KEYWORDS_2 CHAR(5) INIT(’SHORT’), 00045000
3 SET_KEYWORDS_3 CHAR(7) INIT(’MYVAR03’); 00046000

00047000
DCL 1 SET_VALUES, 00048000

3 SET_VALUES_1 FIXED BIN(31), 00049000
3 SET_VALUES_2 FIXED BIN(31), 00050000
3 SET_VALUES_3 FIXED BIN(31); 00051000

00052000
/**/ 00053000
/* Main program */ 00054000
/**/ 00055000
DSQCOMM = ’’; 00056000
DSQ_COMM_LEVEL = DSQ_CURRENT_COMM_LEVEL; 00057000

00058000
/**/ 00059000
/* Start a query interface session */ 00060000
/**/ 00061000
NUMBER_OF_PARAMETERS = 1; 00062000
COMMAND_LENGTH = LENGTH(START_QUERY_INTERFACE); 00063000
KEYWORD_LENGTHS(1) = LENGTH(START_KEYWORDS); 00064000
DATA_LENGTHS(1) = LENGTH(START_KEYWORD_VALUES); 00065000

00066000
CALL DSQCIPX(DSQCOMM, 00067000

COMMAND_LENGTH, 00068000
START_QUERY_INTERFACE, 00069000
NUMBER_OF_PARAMETERS, 00070000
KEYWORD_LENGTHS, 00071000
START_KEYWORDS, 00072000
DATA_LENGTHS, 00073000
START_KEYWORD_VALUES, 00074000
DSQ_VARIABLE_CHAR); 00075000

00076000

Figure 58. DSQABFP, sample PL/I program (Part 2 of 3)

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 205

/**/ 00077000
/* Set numeric values into query using SET command */ 00078000
/**/ 00079000
NUMBER_OF_PARAMETERS = 3; 00080000
COMMAND_LENGTH = LENGTH(SET_GLOBAL_VARIABLES); 00081000
KEYWORD_LENGTHS(1) = LENGTH(SET_KEYWORDS_1); 00082000
KEYWORD_LENGTHS(2) = LENGTH(SET_KEYWORDS_2); 00083000
KEYWORD_LENGTHS(3) = LENGTH(SET_KEYWORDS_3); 00084000
DATA_LENGTHS(1) = 4; 00085000
DATA_LENGTHS(2) = 4; 00086000
DATA_LENGTHS(3) = 4; 00087000
SET_VALUES_1 = 20; 00088000
SET_VALUES_2 = 40; 00089000
SET_VALUES_3 = 84; 00090000

00091000
CALL DSQCIPX(DSQCOMM, 00092000

COMMAND_LENGTH, 00093000
SET_GLOBAL_VARIABLES, 00094000
NUMBER_OF_PARAMETERS, 00095000
KEYWORD_LENGTHS, 00096000
SET_KEYWORDS, 00097000
DATA_LENGTHS, 00098000
SET_VALUES, 00099000
DSQ_VARIABLE_FINT); 00100000

00101000
/**/ 00102000
/* Run a Query */ 00103000
/**/ 00104000
COMMAND_LENGTH = LENGTH(RUN_QUERY); 00105000

00106000
CALL DSQCIPL(DSQCOMM, 00107000

COMMAND_LENGTH, 00108000
RUN_QUERY); 00109000

00110000
/**/ 00111000
/* Print the results of the query */ 00112000
/**/ 00113000
COMMAND_LENGTH = LENGTH(PRINT_REPORT); 00114000

00115000
CALL DSQCIPL(DSQCOMM, 00116000

COMMAND_LENGTH, 00117000
PRINT_REPORT); 00118000

00119000
/**/ 00120000
/* End the query interface session */ 00121000
/**/ 00122000
COMMAND_LENGTH = LENGTH(END_QUERY_INTERFACE); 00123000

00124000
CALL DSQCIPL(DSQCOMM, 00125000

COMMAND_LENGTH, 00126000
END_QUERY_INTERFACE); 00127000

00128000
END DSQABFP; 00129000

Figure 58. DSQABFP, sample PL/I program (Part 3 of 3)

PL/I Language Interface

206 QMF: Developing QMF Applications

DSQCOMM for PL/I

/**/ 00001000
/* PL/I include for Query Callable Interface (MVS/VM) */ 00002000
/**/ 00003000

00004000
/* Structure declare for Communications Area */ 00005000
DCL 00006000
1 DSQCOMM, 00007000

3 DSQ_RETURN_CODE FIXED BIN(31), /* function return code */ 00008000
3 DSQ_INSTANCE_ID FIXED BIN(31), /* start ID */ 00009000
3 DSQ_COMM_LEVEL CHAR(12), /* communications level */ 00010000
3 DSQ_PRODUCT CHAR(2), /* query product id */ 00011000
3 DSQ_PRODUCT_RELEASE CHAR(2), /* query product release */ 00012000
3 DSQ_RESERVE1 CHAR(28), /* reserved */ 00013000
3 DSQ_MESSAGE_ID CHAR(8), /* completion message ID */ 00014000
3 DSQ_Q_MESSAGE_ID CHAR(8), /* query message ID */ 00015000
3 DSQ_START_PARM_ERROR CHAR(8), /* start parms in error */ 00016000
3 DSQ_CANCEL_IND CHAR(1), /* cmd cancel indicator */ 00017000

/* 1 = cancelled, 0 = not cancelled*/ 00018000
3 DSQ_RESERVE2 CHAR(23), /* reserved */ 00019000
3 DSQ_RESERVE3 CHAR(156), /* reserved */ 00020000
3 DSQ_MESSAGE_TEXT CHAR(128), /* QMF command message */ 00021000
3 DSQ_Q_MESSAGE_TEXT CHAR(128); /* QMF query message */ 00022000

00023000
/* Return Codes */ 00024000
DCL 00025000

DSQ_SUCCESS FIXED BIN(31) INIT(0) STATIC, 00026000
DSQ_WARNING FIXED BIN(31) INIT(4) STATIC, 00027000
DSQ_FAILURE FIXED BIN(31) INIT(8) STATIC, 00028000
DSQ_SEVERE FIXED BIN(31) INIT(16) STATIC; 00029000

00030000
/* Communications Level */ 00031000
DCL 00032000

DSQ_CURRENT_COMM_LEVEL CHAR(12) INIT(’DSQL>001002<’) STATIC; 00033000
00034000

/* Query Product ID */ 00035000
DCL 00036000

DSQ_QRW CHAR(2) INIT(’01’) STATIC, 00037000
DSQ_QMF CHAR(2) INIT(’02’) STATIC, 00038000
DSQ_QM4 CHAR(2) INIT(’03’) STATIC; 00039000

00040000

Figure 59. DSQCOMML, PL/I communications area (Part 1 of 2)

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 207

/* Query Product Release ID */ 00041000
DCL 00042000

DSQ_QRW_V1R2 CHAR(2) INIT(’01’) STATIC, 00043000
DSQ_QRW_V1R3 CHAR(2) INIT(’02’) STATIC, 00044000
DSQ_QMF_V2R4 CHAR(2) INIT(’01’) STATIC, 00045000
DSQ_QMF_V3R1 CHAR(2) INIT(’02’) STATIC, 00046000
DSQ_QMF_V3R1M1 CHAR(2) INIT(’03’) STATIC, 00047000
DSQ_QMF_V3R2 CHAR(2) INIT(’04’) STATIC, 00048000
DSQ_QMF_V3R3 CHAR(2) INIT(’05’) STATIC, 00049000
DSQ_QMF_V6R1 CHAR(2) INIT(’06’) STATIC, 00050000
DSQ_QM4_V1R1 CHAR(2) INIT(’01’) STATIC; 00051000

00052000
/* Cancelled Indicator */ 00053000
DCL 00054000

DSQ_CANCEL_YES CHAR(1) INIT(’1’) STATIC, 00055000
DSQ_CANCEL_NO CHAR(1) INIT(’0’) STATIC; 00056000

00057000
/* Variable Types */ 00058000
DCL 00059000

DSQ_VARIABLE_CHAR CHAR(4) INIT(’CHAR’) STATIC, 00060000
DSQ_VARIABLE_FINT CHAR(4) INIT(’FINT’) STATIC; 00061000

00062000
/* Mode */ 00063000
DCL 00064000

DSQ_INTERACTIVE CHAR(1) INIT(’1’) STATIC, 00065000
DSQ_BATCH CHAR(1) INIT(’2’) STATIC; 00066000

00067000
/* Yes or No */ 00068000
DCL 00069000

DSQ_YES CHAR(1) INIT(’1’) STATIC, 00070000
DSQ_NO CHAR(1) INIT(’2’) STATIC; 00071000

00072000
/* Query Interface Entry Point */ 00073000
DCL 00074000

DSQCIPL ENTRY (*, /* interface block */ 00075000
FIXED BIN(31), /* length of command */ 00076000
CHAR(*)) /* command string */ 00077000
EXTERNAL OPTIONS(ASSEMBLER); 00078000

DCL 00079000
DSQCIPX ENTRY (*, /* interface block */ 00080000

FIXED BIN(31), /* length of command */ 00081000
CHAR(*), /* command string */ 00082000
FIXED BIN(31), /* # of command keywords */ 00083000
, / length of keyword */ 00084000
, / keyword string */ 00085000
, / length of value */ 00086000
, / value of keyword */ 00087000
CHAR(4)) /* data type of value */ 00088000
EXTERNAL OPTIONS(ASSEMBLER); 00089000

Figure 59. DSQCOMML, PL/I communications area (Part 2 of 2)

PL/I Language Interface

208 QMF: Developing QMF Applications

Running your programs under CICS
After you write your program, you need to compile and run it. The examples
listed in this section show the steps necessary to do so.

QMF does not ship the REXX EXEC, JCL, or CLIST in these examples, but
you can copy them from here, altering them to suit your installation.

Translating, compiling, and link-editing under CICS in MVS
When you translate, compile, and link-edit a program that uses the QMF
callable interface, consider the following:
v The communications area DSQCOMML must be available to the compile

step or copied into your program.
v The QMF interface modules DSQCIPL and DSQCIPX must be available

during the link-edit phase of your program.

The following is an example using the CICS-supplied procedure DFHEBTPL.
For instructions on how to use this procedure, see your release of CICS for
VSE/ESA System Definition Guide.

Translating, compiling, and link-editing under CICS in VSE
The VSE job control in Figure 61 on page 210 is an example of installing a
PL/I program into CICS running on VSE. This example, provided with QMF,
is located in the QMF sublibrary and is named DSQ3CIP.Z. See the CICS for

//samPLI JOB
// EXEC PROC=DFHEBTPL
//TRN.SYSIN DD *
*PROCESS XOPTS(CICS translator options)

.
Your program or copy of QMF sample DSQABFP
.

/*
//* Provide Access to QMF Communications Macro DSQCOMML
//PLI.SYSLIB DD DSN=QMF720.SDSQSAPE,DISP=SHR
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE CICSLOAD(DFHPL1OI)
INCLUDE CICSLOAD(DFHEPI)
INCLUDE QMFLOAD(DSQCIPL)
INCLUDE QMFLOAD(DSQCIPX)
ORDER DFHPL1OI,DFHEPI
ENTRY sampPLI
MODE AMODE(31) RMODE(ANY)
NAME sampPLI(R)

/*

Figure 60. JCL for running the CICS translator, PL/I compiler, and linkage editor

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 209

VSE/ESA System Definition Guide and the PL/I VSE Programming Guide for
detailed information.

..* $$ JOB JNM=DSQ3CIP,DISP=D,CLASS=0
// JOB DSQ3CIP Sample job to Install QMF Callable Interface (PL/I)
* --
* Install QMF Callable Interface Example (PL/I)
* ---
// SETPARM VOLID=volid *-- update volid for syspch
// SETPARM START=rtrk *-- update start track/block (syspch)
// SETPARM SIZE=ntrks *-- update number of tracks/blocks (syspch)
* ---
// DLBL IJSYSPH,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSPCH,,1,0,&START,&SIZE
ASSGN SYSPCH,DISK,VOL=&VOLID,SHR
* Library search chain must contain the QMF, CICS and PL/I sublibrary
// LIBDEF *,SEARCH=(PRD2.PROD,PRD1.BASE,PRD2.CONFIG)
// LIBDEF PHASE,CATALOG=PRD2.PROD
* --
* Step 1: Translate callable interface program (PL/I)
* ---
* You may need to update or remove the SLI statement for your program.
* ---
// EXEC DFHEPP1$,SIZE=256K,PARM=’XOPTS(CICS)’
..* $$ SLI MEM=DSQABFP.Z,S=PRD2.PROD
/*
* ---
* Step 2: Compile callable interface program (PL/I)
* ---
CLOSE SYSPCH,00D
// DLBL IJSYSIN,’CICS.TRANSLAT.OUTPUT’,0
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,VOL=&VOLID,SHR
// OPTION NODECK,CATAL

PHASE DSQABFP,*
INCLUDE DFHPL1I

// EXEC PLIOPT
CLOSE SYSIPT,SYSRDR
/*

Figure 61. Sample JCL for VSE (Part 1 of 2)

PL/I Language Interface

210 QMF: Developing QMF Applications

Compiling and running your programs under CMS in VM
The following program compiles and runs your callable interface application
using the PL/I compiler.

QMF does not ship the REXX EXEC in this example, but you can copy it from
here, altering it to suit your installation.

* ---
* Step 3: Link-edit callable interface program (PL/I)
* ---
// EXEC LNKEDT,PARM=’AMODE=31,RMODE=ANY’
/*
/&
// JOB RESET
ASSGN SYSIPT,SYSRDR IF 1A93D, CLOSE SYSIPT,SYSRDR
ASSGN SYSPCH,00D IF 1A93D, CLOSE SYSPCH,00D
/&
..* $$ EOJ

Figure 61. Sample JCL for VSE (Part 2 of 2)

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 211

/**/
/* Compile QMF PL/I program and run it. */
/**/
TRACE off
ADDRESS CMS

/**/
/* Access PL/I product disk using a program, PRODUCT, that you */
/* write. */
/**/
"EXEC PRODUCT PLIV"

/**/
/* Get QMF DSQCOMM into a macro library and set GLOBAL compile */
/* maclibs. */
/**/
"ERASE TEMPP MACLIB A"
"MACLIB GEN TEMPP DSQCOMML"
Maclist = "TEMPP PLICOMP DMSSP CMSLIB OSMACRO"
"GLOBAL MACLIB" Maclist

/**/
/* Compile the program */
/**/
POPTS = ’(INC SOURCE LIST LMSG M NAG NC(E) NIS NOESD NSTG OPT(2)’
’PLIOPT’ yourname popts

/**/
/* Access SQL/DS and initialize database */
/**/
"EXEC PRODUCT SQLDS"
"EXEC SQLINIT DBNAME(SQLDBA)"

/**/
/* Access GDDM product disk */
/**/
"EXEC PRODUCT GDDM"

Figure 62. REXX program to compile and run your program (Part 1 of 2)

PL/I Language Interface

212 QMF: Developing QMF Applications

You might have to modify this program to suit your installation.

Compiling and link-editing in TSO
The following job uses the PL/I compiler to compile your callable interface
application and then link-edits the application. Some parameters can vary
from one installation to the next. See your QMF administrator for details.

/**/
/* Issue Filedefs for QMF product */
/**/
"FILEDEF ISPLLIB CLEAR"
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 133 BLKSIZE 133 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"

/**/
/* Provide access to QMF and PL/I program libraries */
/**/
’GLOBAL MACLIB TEMPP’
’GLOBAL LOADLIB DSQLDLIB PLILIB’
’GLOBAL TXTLIB PLILIB IBMLIB ADMRLIB ADMPLIB ADMGLIB’

Say "Starting to run PL/I program"
"RUN yourname"

Exit 0

Figure 62. REXX program to compile and run your program (Part 2 of 2)

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 213

Running in TSO without ISPF
After you compile your program for the TSO environment, the following
CLIST runs your program:

//samPLI JOB
//STEP1 EXEC IEL1CL
//* Provide Access to QMF Communications Macro DSQCOMML
//PLI.SYSLIB DD DSN=QMF720.SAMPLIB,DISP=SHR
//PLI.SYSIN DD *

.
Your program or copy of QMF sample DSQABFP
.

/*
//* Provide Access to QMF Interface Module
//LKED.QMFLOAD DD DSN=QMF720.SDSQLOAD,DISP=SHR
//LKED.SYSIN DD *

INCLUDE QMFLOAD(DSQCIPL)
INCLUDE QMFLOAD(DSQCIPX)
ENTRY sampPLI
MODE AMODE(31) RMODE(ANY)
NAME sampPLI(R)

/*

Figure 63. JCL to run the PL/I compiler and linkage editor

PL/I Language Interface

214 QMF: Developing QMF Applications

Running in TSO under ISPF
After you compile your program for the TSO environment, the following
CLIST runs your program:

PROC 0
CONTROL ASIS
/**/
/* Note: QMF, DB2, GDDM and PL/I load libraries must be */
/* allocated before running this CLIST. */
/* Name of QMF load library is "QMF720.SDSQLOAD". */
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program using TSO CALL command */
/**/
CALL sampPLI
EXIT CODE(0)

Figure 64. CLIST to run your program in TSO without ISPF

PL/I Language Interface

Appendix A. Sample Code for Callable Interface Languages 215

The EXIT CODE(4) suppresses the ISPF disposition panel.

REXX language interface

The REXX callable interface provided here corresponds to that provided for
other SAA languages.

PROC 0
CONTROL ASIS
/**/
/* Specify attribute list for dataset allocations */
/**/
ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)
ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)
ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)
ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)
/**/
/* Datasets used by TSO */
/**/
ALLOC FI(SYSPROC) DA(’QMF720.SDSQCLTE’,’ISR.ISRCLIB’)
ALLOC FI(SYSEXEC) DA(’QMF720.SDSQEXCE’)
/**/
/* Datasets used by ISPF */
/**/
ALLOC FI(ISPLLIB) SHR REUSE +

DA(’QMF720.SDSQLOAD’,’ADM.GDDMLOAD’,’DSN.DSNEXIT’,’DSN.DSNLOAD’, +
’PLI.PLILINK’,’PLI.SIBMLINK’)

ALLOC FI(ISPMLIB) SHR REUSE +
DA(’QMF720.SDSQMLBE’,’ISR.ISRMLIB’,’ISP.ISPMLIB’)

ALLOC FI(ISPPLIB) SHR REUSE +
DA(’QMF720.SDSQPLBE’,’ISR.ISRPLIB’,’ISP.ISPPLIB’)

ALLOC FI(ISPSLIB) SHR REUSE +
DA(’QMF720.SDSQSLBE’,’ISR.ISRSLIB’,’ISP.ISPSLIB’)

ALLOC FI(ISPTLIB) SHR REUSE +
DA(’ISR.ISRTLIB’,’ISP.ISPTLIB’)

/**/
/* QMF/GDDM Datasets */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF720.QMFMAPS’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF720.DSQCFORM’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMSYMBL) DA(’ADM.GDDMSYM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’ADM.GDDM.CHARTLIB’) SHR REUSE
ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE
/**/
/* Datasets used by QMF */
/**/
ALLOC FI(DSQPRINT) SYSOUT(X) USING(PRINTDCB)
ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)
ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA) USING(EDITDCB)
ALLOC FI(DSQPNLE) DA(’QMF720.DSQPNLE’) SHR REUSE
/**/
/* Start your program as the initial ISPF dialog */
/**/
ISPSTART PGM(sampPLI) NEWAPPL(DSQE)
EXIT CODE(4)

Figure 65. CLIST for running your program in TSO under ISPF

REXX Language Interface

216 QMF: Developing QMF Applications

Note to CICS users
Because REXX is not available under QMF CICS, the QMF callable
interface for REXX does not work under CICS.

REXX is an interpretive language; you do not need to compile it. However,
programs written using compiled REXX or other compiled languages have
better performance than the same programs written using interpretive REXX.
A REXX compiler is available for REXX programs, but not for procedures with
logic.

Under TSO, you can reduce the resources required to use REXX services when
you use procedures with logic and certain Form functions (calculations,
defined columns, and conditions) by invoking QMF using the REXX callable
interface. All of these functions use REXX.

For example, less resources are required to perform PRINT REPORT or
BOTTOM on the REPORT panel if the QMF session is initiated using the
REXX callable interface. The reduction of resource consumption can be
substantial and is most noticeable when running QMF under TSO/E.

The REXX language always operates in a command environment that
determines how and where the command is processed. If you write a REXX
program that issues QMF commands, you can use the QMF command
environment through the ADDRESS QRW command. For more information,
see Chapter 5, “ADDRESS QRW: Using the QMF Command Environment” on
page 37.

Interface communications variables for REXX
The communications variables consist of the following REXX variables. They
are set after the completion of every call.

Table 20 on page 218 shows the interface communication variables, which
must not be altered by the calling program:

REXX Language Interface

Appendix A. Sample Code for Callable Interface Languages 217

Table 20. Interface communications variables for REXX

Structure Name Description

dsq_return_code Integer that indicates the status of SAA Query. Possible
values are:

dsq_success
Successful processing of the request.

dsq_warning
Normal completion with warnings.

dsq_failure
Command did not process correctly.

dsq_severe
Severe error; SAA Query session has ended.
Because the SAA Query session has ended,
additional calls to SAA Query cannot be made
using this instance ID.

The value of dsq_return_code is also placed in the REXX
variable rc.

dsq_instance_id Identifier that is established by SAA Query during
processing of the START command.

dsq_product Query manager product in use. Possible values are:

dsq_qrw
OS/2 Query Manager

dsq_qmf
QMF

dsq_qm4
OS/400 Query Management

REXX Language Interface

218 QMF: Developing QMF Applications

Table 20. Interface communications variables for REXX (continued)

Structure Name Description

dsq_product_release Release level of the query product in use. Possible values
are:

v OS/2:

dsq_qrw_v1r2
Version 1 Release 2

dsq_qrw_v1r3
Version 1 Release 3

v OS/400:

dsq_qm4_v1r4
Version 1 Release 1

v QMF:

dsq_qmf_v2r4
QMF Version 2 Release 4

dsq_qmf_v3r1
QMF Version 3 Release 1

dsq_qmf_v3r1m1
QMF Version 3 Release 1 Modification 1

dsq_qmf_v3r2
QMF Version 3 Release 2

dsq_qmf_v3r3
QMF Version 3 Release 3

dsq_qmf_v6r1
QMF Version 6

dsq_qmf_v7r2
QMF Version 7 Release 2

dsq_message_id Completion message ID.

dsq_q_message_id Query message ID.

dsq_start_parm_error Parameter in error when START failed due to a
parameter error.

dsq_cancel_ind Command cancel indicator; indicates whether the user
had canceled command processing while QMF was
running a command. Possible values are:

dsq_cancel_yes
The user canceled the command

dsq_cancel_no
The user did not cancel the command

REXX Language Interface

Appendix A. Sample Code for Callable Interface Languages 219

|
|

Table 20. Interface communications variables for REXX (continued)

Structure Name Description

dsq_message_text Completion message text.

dsq_q_message_text Query message text.

Function call for REXX
The callable interface is accessed by using normal REXX function calls. QMF
provides an external subroutine called DSQCIX, which is used to run all SAA
Query commands.

DSQCIX Linear Syntax
call DSQCIX cmd parmlist

v cmd is a QMF command written as an uppercase character string.
v parmlist is a list of parameter and value pairs, as shown in the following

diagram:

MM P

,

(parmname = value
)

MN

The entire command, including the parmlist, should be passed to QMF as a
single REXX variable written as a character string. This string must be
enclosed in quotation marks (' ') or (" "). When using REXX variables as part
of the command string, don’t enclose the argument. For example:
CALL DSQCIX "RUN QUERY NAME (&ECN="REXAUG",CONFIRM=YES)"

parmname
Name of a parameter.

value
Value that is to be associated with the parameter name specified by
parmname.

Examples::
call DSQCIX "RUN QUERY Q1"
call DSQCIX "PRINT REPORT (FORM=F1"
call DSQCIX "EXIT"

In the parmlist, the same results occur whether the following elements are
present or not:

Comma (.) between parameters
A space produces the same result

REXX Language Interface

220 QMF: Developing QMF Applications

Closing parenthesis ())
Not required

Equal sign (=) between parmname and value
A space produces the same result

Each of the following would produce the same result.
call dsqcix "SET GLOBAL (abc=17, def=26"
call dsqcix "SET GLOBAL (abc=17 def=26"
call dsqcix "SET GLOBAL (abc=17 , def=26)"
call dsqcix "SET GLOBAL (abc 17 def=26)"

REXX programming example
The following program, DSQABFX, is shipped with QMF.

You can look at the sample source code listing here or you can access it
online. For MVS, the sample program is a member of the library
QMF710.SDSQEXCE; for VM, the sample program is on the production disk.
REXX is not available in QMF CICS.

The sample program for the REXX callable interface performs the following
function:
v Starts QMF
v Sets three global variables
v Runs a query called Q1
v Prints the resulting report using form F1
v Ends the QMF session

QMF does not supply query Q1 or form F1, but the sample program uses
these objects.

REXX Language Interface

Appendix A. Sample Code for Callable Interface Languages 221

/*REXX***/
/* Sample Program: DSQABFX */
/* REXX Version of the SAA Query Callable Interface */
/**/

/**/
/* Start a query interface session */
/**/

call dsqcix "START (DSQSMODE=INTERACTIVE"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/**/
/* Set numeric values into query using SET command */
/**/

call dsqcix "SET GLOBAL (MYVAR01=20,SHORT=40,MYVAR03=84"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/**/
/* Run a Query */
/**/

call dsqcix "RUN QUERY Q1"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/**/
/* Print the results of the query */
/**/

call dsqcix "PRINT REPORT (FORM=F1)"
say dsq_message_id dsq_message_text
if dsq_return_code = dsq_severe then exit dsq_return_code

/**/
/* End the query interface session */
/**/

call dsqcix "EXIT"
say dsq_message_id dsq_message_text
exit dsq_return_code

Figure 66. DSQABFX, a sample REXX program

REXX Language Interface

222 QMF: Developing QMF Applications

Running your programs under CMS in VM
The following program runs your callable interface application using the
REXX CALL interface.

You might have to modify this program to suit your installation.

/** */
/* Access SQL/DS and initialize database */
/** */
"EXEC PRODUCT SQLDS" */
"EXEC SQLINIT DBNAME(SQLDBA)" */

*/
/** */
/* Access GDDM product disk */
/** */
"EXEC PRODUCT GDDM" */

*/
/** */
/* Issue Filedefs for QMF product */
/** */
/* DEBUG = DDNAME FOR QMF DIAGNOSTICS OUTPUT */
"FILEDEF DSQDEBUG PRINTER (LRECL 80 BLKSIZE 80 RECFM FBA PERM"
/* PRINT = DDNAME FOR QMF PRINTED OUTPUT */
"FILEDEF DSQPRINT PRINTER (LRECL 121 BLKSIZE 121 RECFM FBA PERM"
/* EDIT = DDNAME FOR QMF EDIT TRANSFER FILE */
"FILEDEF DSQEDIT DISK QMFEDIT FILE A (PERM"
/* DSQSIDE = DDNAME FOR QMF SPILL FILE */
"FILEDEF DSQSPILL DISK DSQSIDE DATA A1 (PERM"
/* DSQPNLE = DDNAME FOR PANEL FILE */
"FILEDEF DSQPNLE DISK DSQPNLE FILE * (PERM"
"FILEDEF ISPLLIB CLEAR"
"FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB *"

/**/
/* Provide access to QMF and GDDM program libraries */
/**/
"GLOBAL LOADLIB DSQLDLIB "
"GLOBAL TXTLIB ADMRLIB ADMPLIB ADMGLIB"

/* The beginning of your REXX program */
.
.
.
.
/* The end of your REXX program */

Figure 67. REXX program to run your program in CMS

REXX Language Interface

Appendix A. Sample Code for Callable Interface Languages 223

Running your programs under TSO in MVS
You can run your REXX program by writing a program similar to the
following:

A REXX example of using an INTERACT l’QMF720oop
Normally, when your callable interface program issues an INTERACT
command and the user issues the END command, QMF immediately returns
control to your program. However, interactive QMF allows the user to issue
the END command to return to the QMF Home panel. Issuing the END
command a second time ends the QMF session.

/***/
/* Issue TSO Allocates for QMF Product */
/***/
Address TSO

"ATTR PRINTDCB LRECL(133) RECFM(F B A) BLKSIZE(1330)"
"ATTR DEBUGDCB LRECL(80) RECFM(F B) BLKSIZE(3120)"
"ATTR UDUMPDCB LRECL(125) RECFM(V B A) BLKSIZE(1632)"
"ATTR EDITDCB LRECL(79) RECFM(F B A) BLKSIZE(4029)"
"ALLOC FI(SYSPROC) SHR REUSE ",
"DA(’QMF720.DSQCLSTE,’",

"’DSN.DSNCLIST’)"
"ALLOC FI(SYSEXEC) SHR REUSE ",
"DA(’QMF720.SDSQEXCE’)"
"ALLOC FI(ISPLLIB) SHR REUSE ",
"DA(’QMF720.SDSQLOAD,’",

"’ADM.GDDM.GDDMLOAD,’",
"’DSN.DSNLOAD’)"

"ALLOC FI(DSQPNLE) DA(’QMF710.DSQPNLE’) SHR REUSE"
"ALLOC FI(DSQPRINT) SYSOUT USING(PRINTDCB)"
"ALLOC FI(SYSPRT) SYSOUT(X) LRECL(132) RECFM(FBA) BLKSIZE(132)"
"ALLOC FI(DSQDEBUG) SYSOUT(X) USING(DEBUGDCB)"
"ALLOC FI(DSQUDUMP) SYSOUT(X) USING(UDUMPDCB)"
"ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(1,1) TRACKS"
"ALLOC DDNAME(DSQEDIT) UNIT(SYSDA) NEW USING(EDITDCB)"
"ALLOC FI(ADMDEFS) DA(’ADM.GDDM.NICKNAME’) SHR REUSE"
"ALLOC FI(ADMGGMAP) DA(’QMF720.DSQMAPE’) SHR REUSE"
"ALLOC FI(ADMCFORM) DA(’QMF720.DSQCHART’) SHR REUSE"
"ALLOC FI(DSQUCFRM) DA(’QMF720.DSQUCFRM’) SHR REUSE"
"ALLOC FI(ADMGDF) DA(’GDDM.ADMGDF’) SHR REUSE"
"ALLOC FI(ADMSYMBL) DA(’ADM.GDDM.GDDMSYM’) SHR REUSE"

/* The beginning of your REXX program */
.
.
.
/* The end of your REXX program */

Figure 68. REXX program to run your program in TSO

REXX Language Interface

224 QMF: Developing QMF Applications

By adding the following logic to your program, you can make the END
command in an interactive session started by the INTERACT command from
a callable interface program behave similarly to the way END behaves in
interactive QMF.

This program uses dsq_message_id to determine how to proceed. These
values can change from one release to the next.

This program is not distributed with QMF.

REXX Language Interface

Appendix A. Sample Code for Callable Interface Languages 225

/*REXX***/
/* Sample Program: Using INTERACT loop */
/**/
/**/
/* Start an interactive QMF session */
/**/
trace error

parms = "START (DSQSMODE=INTERACTIVE"
call dsqcix parms
if dsq_return_code = dsq_severe then exit dsq_return_code
/**/
/* SET GLOBAL to show panel IDs */
/**/
call dsqcix "SET GLOBAL (DSQDC_SHOW_PANID=1"
if dsq_return_code = dsq_severe then exit dsq_return_code
/**/
/* Issue message */
/**/
call dsqcix "MESSAGE (TEXT=’Ok, You may enter a command.’)"
if dsq_return_code = dsq_severe then exit dsq_return_code
/**/
/* INTERACT loop */
/**/
Continue = "yes"
Do while continue = "yes"

call DSQCIX "INTERACT"
Select

When (dsq_return_code = dsq_severe) Then /* Severe Error */
Continue = "no"

When (dsq_message_id = "DSQ21869") Then /* END from HOME panel */
Continue = "no"

When (dsq_message_id = "DSQ90557") Then /* User issued EXIT */
Continue = "no"

Otherwise nop /* OK continue session */
End

End
/**/
/* End the session */
/**/
if dsq_message_id <> "DSQ90557" then /* EXIT not issued */

call dsqcix "EXIT" /* Issue EXIT */

exit dsq_return_code

Figure 69. REXX program that uses an INTERACT loop

226 QMF: Developing QMF Applications

Appendix B. Export/Import Formats

This chapter describes the QMF format for data, and lists the table and field
numbers for each encoded format object:
v Form
v Prompted query
v Report

For explanations and examples of these lists, see Chapter 9, “Importing and
Exporting QMF Objects” on page 77.

QMF format for data

The data file you export using the EXPORT command (DATAFORMAT=QMF)
consists of two parts: header records, which describe the data in the records,
and the data records, which contain the data.

Header records
The record length of an external data file is the length of a row of the data, as
described under “Data records” on page 229. The header records that precede
the data records are also split into this length. Table 21 shows the information
contained in the header records.

Table 21. Header record information

Byte Position Information and Type

1-8 QMF object format level (8 characters of data).

A QMF object format level specifies how many times the format has
been updated for a particular object.

Because the form object has been altered three times since QMF 1.0,
the object format level for a form exported from QMF 3.2 is 4.
Because the data object format has not been altered, it is still at
object format level 1.

9-10 Number of header records (halfword signed integer).

11-12 Number of data columns (halfword signed integer).

13-30, 37-54, ... Column name (18 characters of data).

31-32, 55-56, ... Data type (halfword signed integer). Data type codes are shown in
Table 22 on page 228.

© Copyright IBM Corp. 1983, 2002 227

Table 21. Header record information (continued)

Byte Position Information and Type

33-34, 57-58, ... Column width (halfword signed integer). For most data types this is
the width of the column in bytes. Exceptions are:

v In DECIMAL columns, the first byte of the halfword represents
the precision, and the second byte represents the scale.

v In GRAPHIC and VARGRAPHIC columns, this value reflects the
width of double-byte characters.

v In FLOAT columns, this value is either 4, indicating single
precision floating point, or 8, indicating double precision floating
point.

35, 59, ... Nulls allowed: Y if nulls are allowed; N if they are not allowed (1
character of data).

36, 60, ... Unused byte.

Bytes 11-12 indicate the number of columns; this means that the information
in bytes 13 through 36 is repeated for each column in the header records. Each
column requires 24 bytes in the header record.

The data type codes are shown in Table 22.

Table 22. Data type codes

Code in
Hexadecimal

Code in Decimal Data Type Meaning

X'180' 384 DATE Date

X'184' 388 TIME Time

X'188' 392 TIMESTAMP Time stamp

X'1C0' 448 VARCHAR Varying character

X'1C4' 452 CHAR Fixed character

X'1D0' 464 VARGRAPHIC Varying graphic

X'1D4' 468 GRAPHIC Fixed graphic

X'1E0' 480 FLOAT Floating point

X'1E4' 484 DECIMAL Decimal

X'1F0' 496 INTEGER Integer

X'1F4' 500 SMALLINT Small integer

Date, time, and time stamp data is always exported in ISO format.

Export/Import Formats

228 QMF: Developing QMF Applications

For more details of the format of data types, refer to DB2 UDB for OS390 SQL
Reference.

Data records
Data records are of fixed-length format and contain the data to be exported.
The maximum length a data record can be is 7,000 bytes. The length of a data
record is the sum of the widths of the data types that comprise the record.
Use the following table to calculate the widths of each data type.

Important: You cannot export a table with a VARCHAR column whose
maximum allowable length is over 254.

Table 23. Data widths in encoded format data records. Calculate the width of a
particular data type by adding the number of bytes in each column.

Data type
Null

Indicator
Length
Field SO/SI Data

Character 2
Length in header
(LIH)

Date 2 LIH

Floating point 2 8

Integer 2 LIH

Small integer 2 LIH

Time 2 LIH

Time stamp 2 LIH

Decimal 2 (Precision + 2) // 2

Graphic 2 2 (LIH × 2)

Variable character 2 2 LIH

Variable graphic 2 2 2 (2 × LIH)

Note: The LIH is the width given in the header record for that column.

Every data record has two bytes of indicator information, which can have the
following values and corresponding meaning:

Value Meaning

X'0000' The column contains valid data.

X'FFFF' The column contains a null value. Any data in the column is
meaningless.X'FFFE'

Export/Import Formats

Appendix B. Export/Import Formats 229

Table and field numbers for the prompted query object

The following table contains prompted query table and field numbers for T
records that describe each table in the prompted query exported format. The
information in the DESCRIPTION column uniquely identifies specific fields in
the prompted query base panel.

Table definitions (field number 1110) are always exported. Join conditions
(field number 1510) are always exported if more than one table is selected.

To import a prompted query file, the file must have a H record followed by
the tables T record. No tables need to be specified. If no tables are specified,
an empty query is imported. Join conditions are not required unless more
than one table is selected.

Table 24. Table and field numbers for exported prompted query object

Record type Table number Field number Field Description

T 1110 - Table definitions table

1112 -- Table ID (valid table IDs are A-Z, and
#,$,@)

1113 -- Table name

T 1150 - Join conditions table

1152 -- Column 1 name

1153 -- Column 2 name

T 1210 - Columns table

1212 -- Column type:

v C=column

v E=expression

v S=summary function with expression

v F=summary function with only a column

1213 -- Column name, expression, or summary
function

T 1310 - Row selection conditions

1312 -- Entry type:

v 1 - left of operator

v 2 - operator

v 3 - right of operator

v 4 - connector

Export/Import Formats

230 QMF: Developing QMF Applications

Table 24. Table and field numbers for exported prompted query object (continued)

Record type Table number Field number Field Description

1313 -- For entry type '1', identifies column type:

v C=column

v E=expression

v S=summary function

v F=summary function (column name only
specified)

-- For entry type '2', identifies the verb:

v IS for 'is' (Default)

v ISN for 'is not'

-- For entry type '3', (not used)

-- For entry type '4', identifies a connector:

v O for 'or'

v A for 'and' (Default)

1314 -- For entry type '1' this field is:

v Column name, expression, or summary
function

-- For entry type '2', identifies the operator:

v EQ for 'equal to'

v LT for 'less than'

v LE for 'less than or equal to'

v GT for 'greater than'

v GE for 'greater than or equal to'

v BT for 'between'

v SW for 'starting with'

v EW for 'ending with'

v CT for 'containing'

v NL for NULL

-- For entry type '3', identifies a value

-- For entry type '4', (not used)

T 1410 - Sort conditions table

1412 -- Sort direction:

v A for 'ascending'

v D for 'descending'

1413 -- Column

V 1501 Duplicate rows treatment:

v K for 'keep'

v D for 'discard'

Export/Import Formats

Appendix B. Export/Import Formats 231

The meaning of values for fields 1313 and 1314 depends on the sequence
number indicated in field number 1312 in the 1310 table.

Table and field numbers for the form object

Table 25 lists the table numbers for T records and field numbers for V records
for the form object. Each number corresponds to a particular part of the form.

Field 3080, a V record, acts as a “trigger” for the break panels that follow it.
This record appears once for every break panel in your form. The value of the
field reflects the number of the break panel that the fields following field 3080
describe.

Table 25. Table and field numbers for exported form object

Table or field
number

Record type Description Form panel

1110 T Column headings table FORM.COLUMNS

1112 R Column data type 4 FORM.COLUMNS

1113 R Column heading FORM.COLUMNS

1114 R Column usage code FORM.COLUMNS

1115 R Column indentation FORM.COLUMNS

1116 R Column width FORM.COLUMNS

1117 R Column edit code FORM.COLUMNS

1118 R Column sequence FORM.COLUMNS

1119 R Column heading alignment 5 FORM.COLUMNS

1120 R Column data alignment 5 FORM.COLUMNS

1121 R Column definition 5 FORM.COLUMNS

1122 R Pass nulls on column definition 5 FORM.COLUMNS

1180 T Summary calculations table FORM.CALC

1182 R Calculation identification number FORM.CALC

1183 R Summary calculation expression FORM.CALC

1184 R Summary calculation width FORM.CALC

1185 R Summary calculation edit code FORM.CALC

1186 R Pass nulls on calculation 5 FORM.CALC

1201 V Blank lines before heading FORM.PAGE

1202 V Blank lines after heading FORM.PAGE

1210 T Page heading table FORM.PAGE

4. QMF does not display this field on the form panel.

5. This field is new for Version 3.

Export/Import Formats

232 QMF: Developing QMF Applications

Table 25. Table and field numbers for exported form object (continued)

Table or field
number

Record type Description Form panel

1212 R Page heading line number FORM.PAGE

1213 R Page heading alignment FORM.PAGE

1214 R Page heading text FORM.PAGE

1301 V Blank lines before footing FORM.PAGE

1302 V Blank lines after footing FORM.PAGE

1310 T Page foot table FORM.PAGE

1312 R Page footing line number FORM.PAGE

1313 R Page footing alignment FORM.PAGE

1314 R Page footing text FORM.PAGE

1401 V New page for final text FORM.FINAL

1402 V Final summary line number FORM.FINAL

1403 V Blank lines before final text FORM.FINAL

1410 T Final text table FORM.FINAL

1412 R Final text line number FORM.FINAL

1413 R Final text alignment FORM.FINAL

1414 R Final text FORM.FINAL

1501 V Detail line spacing FORM.OPTIONS

1502 V Outlining for break columns FORM.OPTIONS

1503 V Default break text FORM.OPTIONS

1504 V Function name in column heading
for grouping

FORM.OPTIONS

1505 V Column-wrapped lines kept on a
page

FORM.OPTIONS

1506 V Across-summary column FORM.OPTIONS

1507 V Separators for column heading FORM.OPTIONS

1508 V Separators for break summary FORM.OPTIONS

1509 V Separators for across heading FORM.OPTIONS

1510 V Separators for final summary FORM.OPTIONS

1511 V Width of wrapped report lines FORM.OPTIONS

1512 V Page re-numbering at breaks FORM.OPTIONS

1513 V Width of break or final text FORM.OPTIONS

1514 V Column re-ordering FORM.OPTION

1515 V Fixed columns FORM.OPTIONS

2790 V Detail variation number FORM.DETAIL

2791 V Detail variation selection FORM.DETAIL

2805 V Include column heading FORM.DETAIL

Export/Import Formats

Appendix B. Export/Import Formats 233

Table 25. Table and field numbers for exported form object (continued)

Table or field
number

Record type Description Form panel

2810 T Detail heading table FORM.DETAIL

2812 R Detail heading text line FORM.DETAIL

2813 R Detail heading alignment FORM.DETAIL

2814 R Detail heading text FORM.DETAIL

2901 V New page for detail text FORM.DETAIL

2902 V Line number of column data FORM.DETAIL

2904 V Number of lines to skip after detail
text

FORM.DETAIL

2906 V Repeat detail heading FORM.DETAIL

2907 V Number of detail text lines to keep
together

FORM.DETAIL

2910 T Detail text table FORM.DETAIL

2912 R Detail text line number FORM.DETAIL

2913 R Detail text alignment FORM.DETAIL

2914 R Detail text FORM.DETAIL

3080 V Break panel number 5 FORM.BREAKn

3101 V New page for break heading 5 FORM.BREAKn

3102 V Repeat break heading 5 FORM.BREAKn

3103 V Number of lines to skip before break
heading 5

FORM.BREAKn

3104 V Number of lines to skip after break
heading 5

FORM.BREAKn

3110 T Break heading text table 5 FORM.BREAKn

3112 R Break heading line number 5 FORM.BREAKn

3113 R Break heading alignment 5 FORM.BREAKn

3114 R Break heading text 5 FORM.BREAKn

3201 V New page for break text 5 FORM.BREAKn

3202 V Break text summary line 5 FORM.BREAKn

3203 V Number of lines to skip before break
text 5

FORM.BREAKn

3204 V Number of lines to skip after break
text 5

FORM.BREAKn

3210 T Break text table 5 FORM.BREAKn

3212 R Break text line 5 FORM.BREAKn

3213 R Break text alignment 5 FORM.BREAKn

3214 R Break text 5 FORM.BREAKn

3310 T Conditions table 5 FORM.CONDITIONS

3312 R Condition identification number 5 FORM.CONDITIONS

Export/Import Formats

234 QMF: Developing QMF Applications

Table 25. Table and field numbers for exported form object (continued)

Table or field
number

Record type Description Form panel

3313 R Conditional expression 5 FORM.CONDITIONS

3314 R Pass nulls on conditions panel 5 FORM.CONDITIONS

Table 26 shows fields that are valid for objects that were created before
Version 3 Release 1. QMF accepts these fields on input, but does not create
them on output. There is a unique set of field numbers for each break panel.

Table 26. Field numbers for exported form object, before QMF 3.1

Table or
field

number

Record type Description Form panel

1601 V BREAK1: New page for heading FORM.BREAK1

1602 V BREAK1: Repeat column headings FORM.BREAK1

1603 V BREAK1: Blank lines before
heading

FORM.BREAK1

1604 V BREAK1: Blank lines after heading FORM.BREAK1

1610 T BREAK1: Heading table FORM.BREAK1

1612 R BREAK1: Heading lines FORM.BREAK1

1612 R BREAK1: Heading alignment FORM.BREAK1

1614 R BREAK1: Heading text FORM.BREAK1

1701 V BREAK1: New page for footing FORM.BREAK1

1702 V BREAK1: Repeat column footings FORM.BREAK1

1703 V BREAK1: Blank lines before footing FORM.BREAK1

1704 V BREAK1: Blank lines after footing FORM.BREAK1

1710 T BREAK1: Footing table FORM.BREAK1

1712 R BREAK1: Footing lines FORM.BREAK1

1713 R BREAK1: Footing alignment FORM.BREAK1

1714 R BREAK1: Footing text FORM.BREAK1

1801 V BREAK2: New page for heading FORM.BREAK2

1802 V BREAK2: Repeat column headings FORM.BREAK2

1803 V BREAK2: Blank lines before
heading

FORM.BREAK2

1804 V BREAK2: Blank lines after heading FORM.BREAK2

1810 T BREAK2: Heading table FORM.BREAK2

1812 R BREAK2: Heading lines FORM.BREAK2

1813 R BREAK2: Heading alignment FORM.BREAK2

Export/Import Formats

Appendix B. Export/Import Formats 235

Table 26. Field numbers for exported form object, before QMF 3.1 (continued)

Table or
field

number

Record type Description Form panel

1814 R BREAK2: Heading text FORM.BREAK2

1901 V BREAK2: New page for footing FORM.BREAK2

1902 V BREAK2: Repeat column footings FORM.BREAK2

1903 V BREAK2: Blank lines before footing FORM.BREAK2

1904 V BREAK2: Blank lines after footing FORM.BREAK2

1910 T BREAK2: Footing table FORM.BREAK2

1912 R BREAK2: Footing lines FORM.BREAK2

1913 R BREAK2: Footing alignment FORM.BREAK2

1914 R BREAK2: Footing text FORM.BREAK2

2001 V BREAK3: New page for heading FORM.BREAK3

2002 V BREAK3: Repeat column headings FORM.BREAK3

2003 V BREAK3: Blank lines before
heading

FORM.BREAK3

2004 V BREAK3: Blank lines after heading FORM.BREAK3

2010 T BREAK3: Heading table FORM.BREAK3

2012 R BREAK3: Heading lines FORM.BREAK3

2013 V BREAK3: Heading alignment FORM.BREAK3

2014 R BREAK3: Heading text FORM.BREAK3

2101 V BREAK3: New page for footing FORM.BREAK3

2102 V BREAK3: Repeat column footings FORM.BREAK3

2103 V BREAK3: Blank lines before footing FORM.BREAK3

2104 V BREAK3: Blank lines after footing FORM.BREAK3

2110 T BREAK3: Footing table FORM.BREAK3

2112 R BREAK3: Footing lines FORM.BREAK3

2113 R BREAK3: Footing alignment FORM.BREAK3

2114 R BREAK3: Footing text FORM.BREAK3

2201 V BREAK4: New page for heading FORM.BREAK4

2202 V BREAK4: Repeat column headings FORM.BREAK4

2203 V BREAK4: Blank lines before
heading

FORM.BREAK4

2204 V BREAK4: Blank lines after heading FORM.BREAK4

2210 T BREAK4: Heading table FORM.BREAK4

Export/Import Formats

236 QMF: Developing QMF Applications

Table 26. Field numbers for exported form object, before QMF 3.1 (continued)

Table or
field

number

Record type Description Form panel

2212 R BREAK4: Heading lines FORM.BREAK4

2213 R BREAK4: Heading alignment FORM.BREAK4

2214 R BREAK4: Heading text FORM.BREAK4

2301 V BREAK4: New page for footing FORM.BREAK4

2301 V BREAK4: Repeat column footings FORM.BREAK4

2303 V BREAK4: Blank lines before footing FROM.BREAK4

2304 V BREAK4: Blank lines after footing FORM.BREAK4

2310 T BREAK4: Footing table FORM.BREAK4

2312 R BREAK4: Footing lines FORM.BREAK4

2313 R BREAK4: Footing alignment FORM.BREAK4

2314 R BREAK4: Footing text FORM.BREAK4

2401 V BREAK5: New page for heading FORM.BREAK5

2402 V BREAK5: Repeat column headings FORM.BREAK5

2403 V BREAK5: Blank lines before
heading

FORM.BREAK5

2404 V BREAK5: Blank lines after heading FORM.BREAK5

2410 T BREAK5: Heading table FORM.BREAK5

2412 R BREAK5: Heading lines FORM.BREAK5

2413 R BREAK5: Heading alignment FORM.BREAK5

2414 R BREAK5: Heading text FORM.BREAK5

2501 V BREAK5: New page for footing FORM.BREAK5

2502 V BREAK5: Repeat column footings FORM.BREAK5

2503 V BREAK5: Blank lines before footing FORM.BREAK5

2504 V BREAK5: Blank lines after footing FORM.BREAK5

2510 T BREAK5: Footing table FORM.BREAK5

2512 R BREAK5: Footing lines FORM.BREAK5

2513 R BREAK5: Footing alignment FORM.BREAK5

2514 R BREAK5: Footing text FORM.BREAK5

2601 V BREAK6: New page for heading FORM.BREAK6

2602 V BREAK6: Repeat column headings FORM.BREAK6

2603 V BREAK6: Blank lines before
heading

FORM.BREAK6

Export/Import Formats

Appendix B. Export/Import Formats 237

Table 26. Field numbers for exported form object, before QMF 3.1 (continued)

Table or
field

number

Record type Description Form panel

2604 V BREAK6: Blank lines after heading FORM.BREAK6

2610 T BREAK6: Heading table FORM.BREAK6

2612 R BREAK6: Heading lines FORM.BREAK6

2613 R BREAK6: Heading alignment FORM.BREAK6

2614 R BREAK6: Heading text FORM.BREAK6

2701 V BREAK6: New page for footing FORM.BREAK6

2702 V BREAK6: Repeat column footings FORM.BREAK6

2703 V BREAK6: Blank lines before footing FORM.BREAK6

2704 V BREAK6: Blank lines after footing FORM.BREAK6

2710 T BREAK6: Footing table FORM.BREAK6

2712 R BREAK6: Footing lines FORM.BREAK6

2713 R BREAK6: Footing alignment FORM.BREAK6

2714 R BREAK6: Footing text FORM.BREAK6

Table and field numbers for the report object

The following figure shows the table numbers for T records and field numbers
for V records:

Table 27. General reports. Table and field numbers for exported report object

Table or field
number

Record type Description

1001 V Profile DECIMAL option

1002 V Length of L record control area + fixed area

1010 T Formatted report table

For each formatted data column in the report:

1012 T For all usage codes except OMIT

1013 T Edit code by which data is formatted

1014 T Starting position for field containing formatted data (including
indent area)

1015 T Starting position for field containing formatted data (excluding
indent area)

1016 T Ending position for field containing formatted data

Export/Import Formats

238 QMF: Developing QMF Applications

Table 27. General reports. Table and field numbers for exported report
object (continued)

Table or field
number

Record type Description

1017 T Number of relative physical report line within logical report line
in which formatted column value appears

See Note 2 after Table 28 for the meaning of fields 1014, 1015, and 1016 when
the report is an across-style report.

Table 28. Across reports. Field numbers for exported report object.

Field number Record type Description

2001 V Edit code by which across value is formatted

2002 V Number of data lines per across group

2003 V Indicates whether the across summary column exists

2010 T Across report table

For each across value:

2012 T Starting position for formatted across value. (The across value
appears in the column heading lines)

2013 T Ending position for formatted across value

2014 T Starting position for the set of report columns associated with this
across value, including preceding indent area

Notes:

1. Position 1 of the report line immediately follows the L record fixed area.
2. For aggregated columns in an across report, the fields 1014, 1015, and 1016

describe the relative starting and ending positions of the field within an
across value’s set of aggregated columns. (Refer to field 2014 in the
Table 28.)

3. R records for text lines in each report heading (PAGE or BREAK) or
footing (PAGE, BREAK, or FINAL) are only written up to and including
the last line that contains modifications to the form defaults.
At least one R record is written for each heading or footing even when the
fields for a given heading or footing all have their original values.

4. Continuation records are written for the report object when the maximum
record length would otherwise be exceeded.

Export/Import Formats

Appendix B. Export/Import Formats 239

HTML tags used in QMF reports

Table 29 briefly describes the HTML tag sets that QMF uses to format a report
for display on the world wide web. Each of these tag sets consists of a start
tag and an end tag. The end tags begin with a forward slash (/), and all tags
are enclosed in angle brackets (

). For a full description of these tags, see your HTML 3.0 documentation.

Table 29. HTML 3.0 Tags used in HTML Reports

Tag set Description

<HTML></HTML> Defines the file as an HTML document.

<HEAD></HEAD> These tags mark the boundaries of the document header.

<TITLE></TITLE> QMF inserts the word "Report" between these tags. Content
between these tags is included in the HTML document title.
Placement of the title is browser and platform dependent. These
tags are placed within the header.

<BODY></BODY> These tags follow the header and contain the body of the
document. Report output is placed in the body of the
document.

<PRE></PRE> Content between these tags is displayed as is. No HTML
formatting is performed between them. QMF places report
output between these tags in the body of the HTML document.

Export/Import Formats

240 QMF: Developing QMF Applications

Appendix C. Integrated Exchange Format (IXF)

When you use the EXPORT command to export a DATA or TABLE object
using the DATAFORMAT=IXF option, the file, data set, or CICS data queue is
exported in the Integrated Exchange Format (IXF). QMF supports a subset of
IXF, which is described in this section. See Data Extract: Reference for a
description of the complete Integration Exchange Format.

The IXF format is especially useful if you want to create tables outside the
QMF environment and import them. To do this, set OUTPUTMODE to
CHARACTER.

In QMF an exported IXF file, data set, or CICS data queue consists of the
following records:
v Header record (H)
v Table record (T)
v Column record (C)
v Data record (D)

The exported file, data set, or CICS data queue consists of one H record,
followed by one T record. The T record contains a count of how many C
records follow the T record. There is a C record for each column in the table.
D records follow C records. There is a D record for each row in the table. The
arrangement of records in an exported file, data set, or CICS data queue looks
like Figure 70.

Note: The Database manager PC/IXF file format is not identical to the
System/370™ IXF format. IXF formatted data cannot be transported
between PC and System/370 platforms.

The following sections describe the format of each of these records. The values
shown in parentheses are the values QMF supplies when data is exported.

Figure70.Arrangementofrecordsinanexporteddatafile,dataset,orCICSdataqueue(IXF

format)

©CopyrightIBMCorp.7.43,2002241

Header record (H)

A header record (which is mandatory) is the first record in the file, data set, or
CICS data queue. It is a 42-byte record containing character data. The format
of the H record is as follows:

Byte
Position

Information and Type

01 Header record indicator (H)

02-04 file, data set, or CICS data queue identifier (IXF)

05-08 IXF version (0000)

09-14 Originating product name (QMF)

15-20 Originating product release level (V7R1M0)

21-28 Date the file, data set, or CICS data queue was created; in the form
YYYYMMDD

29-34 Time the file, data set, or CICS data queue was created; in the form
HHMMSS

35-39 The number of records preceding the first D (Data) record in the file,
data set, or CICS data queue. This is a 5-digit numeric value expressed
in character form.

40 DBCS indicator. Tells whether DBCS data is a possibility; Y or N.

41-42 Reserved

Table record (T)

A table record follows the header record. Each IXF file, data set, or CICS data
queue must have a T record. A table record contains table and data
information concerning the file, data set, or CICS data queue being exported.
The format of a T record is as follows:

Byte
Position

Information and Type

01 Table record indicator (T)

02-03 Data name length (18)

04-21 Name of the table from which data is retrieved; left-justified, padded
with blanks to the right. The entire 18-byte field is blank if the table
does not have a name.

22-29 Data name qualifier. Name of the owner of the database table from
which the data is retrieved. The 8-byte field is blank if the table does
not have an owner.

30-41 Data source (database)

Integrated Exchange Format (IXF)

242 QMF: Developing QMF Applications

Byte
Position

Information and Type

42 Convention used to describe data: C for columnar data

43 Data format: C for character (OUTPUTMODE=CHARACTER) M for
machine (OUTPUTMODE=BINARY)

44 Data location: I for internal

45-49 Count of column (C) records. A numeric value in character form
specifying the number of C records before the first data (D) record.

50-51 Reserved

52-81 Blanks

Column record (C)

A column record describes the data characteristics of the column. There is a
column record for each column in the table. The format of the column record
follows:

Byte
Position

Information and Type

01 Column record indicator (C)

02–03 Column name length

04–21 Column name, as obtained from the database or generated by QMF (in
the case where the column did not originally have a name). The name
is left-justified, and padded with blanks to the right if necessary.

22 Indicator that tells if nulls are allowed; (Y or N)

23 Column selected indicator (Y)

24 Key column indicator (Y)

25 Data class (R)

26–28 Data type (see Table 12 on page 108 for data type codes)

29–33 Code page (00000)

34–38 Reserved

39–43 Column data length; a numeric value in character form. If data type is
DECIMAL, the first 3 bytes represent data precision, and the next 2
bytes represent the scale. If data type is INTEGER, SMALLINT, DATE,
TIME, or TIMESTAMP, this field is blank (length is inherent in data
type).

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 243

Byte
Position

Information and Type

44–49 Starting position of column data. A value (in character form) reflecting
the offset of the data for a column from the start of the data record. If
the column allows nulls, this field points to the null indicator. If the
column does not allow nulls, it points to the data itself. Whether or
not the column allows nulls, space for the null indicator is always
present in the record. The starting position is based from the first byte
that contains data. Therefore, the first five bytes of the data (D) record
are not included in any consideration of starting position. The first
data position is position 1, not position 0.

50–79 Column label information, if available, otherwise blanks

80–81 Two bytes of zeros in character form (00)

Data record (D)

There is a data record for each row in the table. The format of the data record
follows:

Byte
Position

Information and Type

01 Data record indicator (D)

02–04 Reserved

05 Blank

06–end of
record

Row data in binary or character form, depending on whether byte 43
of the table record is M (machine) or C (character). Byte 6 represents
the start (position 1) of row data for the first column.

Column data format

Data in D records for n columns is placed side by side:

For each column, the data consists of a null indicator followed by the data
itself. If nulls are allowed (byte 22 of C record = Y), then bytes 44–49 of each
C record points to the null indicator that precedes the data for that column. If
byte 22 = N (nulls not allowed), then bytes 44–49 points to the data itself.
However, in the latter case, space for the null indicator is left in the data
record. The first position in bytes 44–49 is represented by a value of 1, which
points to byte 6 of a D record (bytes 1 through 5 are ignored).

Integrated Exchange Format (IXF)

244 QMF: Developing QMF Applications

The representation of the null indicator depends on what is specified for
OUTPUTMODE: character or binary. OUTPUTMODE is reflected in byte 43 of
the T record: C for character or M for machine (binary). When data format is
character, one byte is used for the null indicator:
v – (dash) indicates data is null
v (blank) indicates data is not null

See Figure 71 on page 252 for an illustration of two D records showing data
that is null in one case and not null in the other.

When the data format is binary, two bytes are used for the null indicator:
v X'FFFF' indicates data is null
v X'0000' indicates data is not null

Figure 72 on page 254 which shows two D records, illustrating both null and
non-null data indicators.

Format of column data by data type
Table 30 shows the length and format of column data in D records for each
data type for both character and binary formats. In the table, IXFCLENG
refers to the contents of bytes 39–43 of a C record (length of column data).

Table 30. Format of IXF column data by data type

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

384 DATE The value in IXFCLENG is not
significant. The length (10
bytes) is inherent in the data
type.

The format is:

yyyy-mm-dd

where yyyy represents the
year, mm the month, and dd
the day. yyyy, mm, and dd
must be numeric characters.
Leading zeroes cannot be
omitted. The allowable range
for yyyy is 0001–9999; for mm,
01–12. The dd range depends
on the month. Examples:

Same as character format

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 245

Table 30. Format of IXF column data by data type (continued)

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

388 TIME The value in IXFCLENG is not
significant. The length (8
bytes) is inherent in the data
type.

The format is:

hh.mm.ss

where hh represents the hour
in 24-hour format, mm is
minutes, and ss is seconds. hh,
mm, and ss must all be
numeric characters. Leading
zeroes can not be omitted.
Allowable ranges are:

v 00 - 23 for hh

v 00 - 59 for mm

v 00 - 59 for ss

The special value 24.00.00 for
midnight is valid. Examples:

10.37.42 is 10:37:42 AM
08.00.00 is 8 AM exactly
23.30.00 is 11:30 PM

Same as character format

Integrated Exchange Format (IXF)

246 QMF: Developing QMF Applications

Table 30. Format of IXF column data by data type (continued)

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

392 TIMESTAMP The value in IXFCLENG is not
significant. The length (26
bytes) is inherent in the data
type.

The format is:

yyyy-mm-dd-hh
.mm.ss.nnnnnn

where yyyy is the year, the
first mm is the month, dd is
the day, hh is hour in 24 hour
format, the second mm is
minutes, ss is seconds, and
nnnnnn is microseconds. Valid
ranges for year, month, day,
hour, minutes, and seconds are
the same as the DATE and
TIME data types. nnnnnn can
be 000000–999999. Examples:

1997-12-31-23
.59.59.999999
(the last microsecond
in 1997)
1998-01-01-00
.00.00.000000
(the first microsecond
in 1998)

24.00.00.000000 is valid for the
time portion of a time stamp.

Same as character format

448 VARCHAR IXFCLENG is the maximum
length of character string. Data
length consists of N bytes
indicated by IXFCLENG
preceded by a 5-byte character
count field. (The allowable
range for N is 0-254 and for
the count field it is 0-N). The
number of characters indicated
by the count field are valid;
the rest are meaningless.
Example:

If IXFCLENG=00010
Data format is:
00005JONESxxxxx

where each x is a blank
character (X'40').

IXFCLENG is the maximum
length of character string. Data
length consists of N bytes
indicated by IXFCLENG
preceded by a 2-byte binary
count field. (The allowable
range for N is 1-254 and for
the count field 0-N). The
number of characters indicated
by the count field are valid;
the rest are meaningless.
Example:

If IXFCLENG=00010
Data format is:
nnJONESxxxxx

where nn=X’0005’ and each x
is a blank character (X'40').

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 247

Table 30. Format of IXF column data by data type (continued)

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

452 CHAR IXFCLENG is length of
character string. Data length is
indicated by N bytes of
IXFCLENG. (Allowable range
for N is 1-254). Example:

If IXFCLENG=00005
Data format is: JONES

where JONES is the 5-byte
character string pointed to by
bytes 44-49 of the C record.

Same as character format

456 LONG VARCHAR Same as VARCHAR, except
that allowable range for N is
0-32767

Same as character format

464 VARGRAPHIC IXFCLENG is the maximum
number of double-byte
characters (2×N bytes). Data
length consists of a 5-byte
character count field, plus
twice the number of bytes
indicated by IXFCLENG, plus
2 (for shift characters). The
number of 2-byte characters in
the count field are valid plus a
shift-out (X'0E') immediately
preceding the data, and a
shift-in (X'0F') immediately
following the data. The rest
can be meaningless.
(Allowable range for N is
1-127 and for the count field
0-N.) Example:

If IXFCLENG = 00006 data
format is:

00003oZZYYXXixxxxxx

where o is shift-out, i is
shift-in, and each x is a blank
character (X'40').

Data length consists of a
2-byte binary count field
followed by twice the number
of bytes indicated by
IXFCLENG. The allowable
range for IXFCLENG is 1-127,
and for the count field
0-IXFCLENG. The number of
2-byte characters in the count
field are valid. There are no
surrounding shift-out and
shift-in characters. The rest can
be meaningless. Example:

If IXFCLENG = 00008 data
format is:

nnZZYYXXWWxxxxxxxx

where nn=X'0004' and each x
is a blank character (X'40').

Integrated Exchange Format (IXF)

248 QMF: Developing QMF Applications

Table 30. Format of IXF column data by data type (continued)

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

468 GRAPHIC IXFCLENG is the number of
double byte characters (2*N
bytes). Data length is 2*N
bytes plus a shift out (X'0E')
immediately preceding the
data, and a shift-in (X'0F')
immediately following the
data. Example:

If IXFCLENG=00005
Data format is:
oZZYYXXWWVVi

where o is shift-out and i is
shift-in.

Same as character format
except that there are no
surrounding shift-in and
shift-out characters in the data
string. Example:

If IXFCLENG=00005
Data format is:
ZZYYXXWWVV

472 LONG
VARGRAPHIC

Same as VARGRAPHIC,
except that the allowable
range for N is 0-16383.

Same as character format.

480 FLOAT The value in IXFCLENG is 8.
The length and format of data
is inherent in the data type:

Data consists of a 23-byte
character value arranged as
follows:

v 1 character for sign

v 18 characters for mantissa
(17 digits and a decimal
point)

v The character E

v 3-character signed exponent

Examples:

-1.2345678901234567E+14
+6.2345678901234567E-01
0.0000000000000000E+00

The value in IXFCLENG is 8.
The length and format of data
is inherent in the data type:

Data consists of an 8-byte
floating point value in
standard IBM S/370¬ format
for long floating point.

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 249

Table 30. Format of IXF column data by data type (continued)

Data Type
Code

Data Type Data Length Information
Character Format

Data Length Information
Binary Format

484 DECIMAL Bytes 39-43 of the C record
represent the precision P (first
3 bytes) and scale S (next 2
bytes) of the number.
Allowable range for P is 0- 15.
S can be any value less than or
equal to P.

Data is formatted as a P+2
byte character value (or P+1
bytes if S=0), right-justified,
with the first byte reserved for
a sign, and a decimal point
(position implied by S) present
only if S is not equal to zero.
Examples:

If P=005, S=00;
Data format is: 12345
If P=006, S=02;
Data format is: +2345.10
If P=004, S=03;
Data format is: -8.515

Bytes 39-43 of the C record
represent the precision P (first
3 bytes) and scale S (next 2
bytes) of the number.
Allowable range for P is 0-15.
S can be any value less than or
equal to P.

Data consists of a (P+2)/2 byte
packed decimal value in
standard IBM S/370 packed
decimal format, with S of the
P digits interpreted as
following the implied decimal
point. Examples:

If P=005, S=00;
Data format is:
X’12345C’
If P=006, S=02;
Data format is:
X’0234510D’

496 INTEGER The value in IXFCLENG is not
significant. The length and
format of data is inherent in
the data type.

Data consists of an 11-byte
character value, right-justified,
with the first character
reserved for a sign. Examples:

0000000013
+1187642200
-0033588727

The value in IXFCLENG is not
significant. The length and
format of data is inherent in
the data type.

Data consists of a 4-byte
binary value.

500 SMALLINT The value in IXFCLENG is not
significant. The length and
format of data is inherent in
the data type.

Data consists of a 6-byte
character value, right-justified,
with the first character
reserved for a sign. Examples:

00023
+00763
-21311

The value in IXFCLENG is not
significant. The length and
format of data is inherent in
the data type.

Data consists of a 2-byte
binary value.

Integrated Exchange Format (IXF)

250 QMF: Developing QMF Applications

Examples of IXF

Assume the same table shown in the example on page 80 (which was
exported using the QMF format) is now exported using the IXF format (with
OUTPUTMODE=CHARACTER):
ID NAME COMM
___ ________ ______
10 SANDERS -
20 PERNAL 612.45

The exported file, data set, or CICS data queue consists of a total of seven
records; an H record, a T record, three C records, and two D records as
shown:

Unprintable binary characters are shown as x’s. Figure 71 on page 252 gives
more detailed information about these records.

HIXF0000QMF V7R1M01998120409560000005N
T18 database CCI00003
C02ID NYNR50000000 000002 00
C04NAME YYNR44800000 00009000008 00
C04COMM YYNR48400000 00702000023 00
D 00010 00007SANDERSxx-
D 00020 00006PERNALxxx 00612.45

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 251

Now suppose the same table is exported using the IXF format but with
OUTPUTMODE=BINARY. As in the previous example, the exported file, data
set, or CICS data queue consists of seven records which are shown here:
HIXF0000QMF V7R1M01998120409565000005N
T18 database CMI00003
C02ID NYNR50000000 000003 00

C04NAME YYNR44800000 00009000005 00
C04COMM YYNR48400000 00702000018 00
D xxxxxxxxSANDERSxxxxxxxx
D xxxxxxxxPERNALxxxxxxxxx

With the exception of bytes 44 through 49 (starting position of column data),
the information in the H, T, and C records is essentially the same. The data in
the D records, however, differs significantly. Figure 72 on page 254 contains
more information about the records of the exported file, data set, or CICS data
queue.

Integrated Exchange Format (IXF)

Appendix C. Integrated Exchange Format (IXF) 253

Figure727FormatofsampleIXFrecords(OUTPUTMODE=BINARY)254QMF:DevelopingQMFApplications

Appendix D. Product Interface Macros

The macros identified in this appendix are provided by QMF as General-Use
Programming Interfaces for customers.

Warning: Do not use any QMF macros as programming interfaces other than
those identified in this appendix.

Product interface macro

v DSQQMFn

where n is the NLF identifier. For English, this identifier is E.

Callable interface macros

v Assembler

– DSQCIA

– DSQCOMMA

v C/370

– DSQCIC

– DSQCICE

– DSQCOMMC

v COBOL

– DSQCIB

– DSQCOMMB

v FORTRAN

– DSQCIF

– DSQCIFE

– DSQCOMMF

v PL/I

– DSQCIPL

– DSQCIPX

– DSQCOMML

v REXX

– DSQCIX

Command interface macro

v DSQCCI

QMF governor exit interface macros

v DXEGOVA
v DXEXCBA

QMF user edit exit macro

v DXEECS

© Copyright IBM Corp. 1983, 2002 255

Product Interface Macros

256 QMF: Developing QMF Applications

Appendix E. QMF Global Variable Tables

QMF provides many variables for use in your applications. In Version 3, QMF
introduced the current naming convention for the callable interface. The
corresponding command interface variable names are still valid.

The callable interface global variable names can be up to 18 characters long.
Callable interface users can use either the old (eight character) names or the
new (18 character) names; however, using the new names is recommended.
Command interface users must use the old names.

The new naming convention is DSQcc_xxxxxxxxxxxx

cc Can be any one of the following category identifiers:

AP Profile-related state information

AO Other (not profile-related) state information

CM Information about the message produced by the previous
command

CP Information about the Table Editor

DC Controls how QMF displays information on the screen

EC Controls how QMF executes commands and procedures

QC Variables produced by a CONVERT QUERY option

QM RUN QUERY error message information

QW Variables unique to QMF for Windows

_ An underscore character

xxxxxxxxxxx
A descriptive name up to 12 characters long

Beginning with Version 3.3, QMF provides a special procedure named
Q.SYSTEM_INI that allows you to customize global variables at initialization.
See the QMF Installing and Managing book for your operating system for more
information.

DSQ Global Variables for Profile-Related State Information

None of these global variables can be modified by the SET GLOBAL
command.

© Copyright IBM Corp. 1983, 2002 257

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAP_CASE DSQAPCAS 01 CASE parameter. Values can be:

1 for UPPER

2 for MIXED

3 for STRING

DSQAP_CONFIRM DSQAPRMP 01 CONFIRM parameter. Values can be:

0 for NO

1 for YES

DSQAP_DECIMAL DSQAPDEC 01 DECIMAL parameter. Values can be:

1 for PERIOD

2 for COMMA

3 for FRENCH

DSQAP_LENGTH DSQAPLEN 18 LENGTH parameter. Its value is that of
the parameter. ('1' through '999' or
'CONT')

DSQAP_PFKEY_TABLE DSQAPPFK 31 Name of the function keys table

DSQAP_PRINTER DSQAPPRT 08 PRINTER parameter. Values can be:

v A nickname for a GDDM printer.

v Blanks for the printer associated with
DSQPRINT.

DSQAP_QUERY_LANG DSQAPLNG 01 LANGUAGE parameter. Values can be:

1 for SQL

2 for QBE

3 for PROMPTED

DSQAP_QUERY_MODEL DSQAMODP 01 MODEL parameter. Value can be '1' for
RELATIONAL

DSQAP_RESOURC_GRP DSQAPGRP 16 RESOURCE GROUP parameter.

DSQAP_SPACE DSQAPSPC 50 SPACE parameter. Its value is that of the
parameter.

DSQAP_SYNONYM_TBL DSQAPSYN 31 SYNONYMS parameter.

DSQAP_TRACE DSQAPTRC 18 TRACE parameter. Values can be:

ALL (maximum tracing)

NONE (minimum tracing)
Specifications for individual QMF
components (Example: A2L2C1)

DSQAP_WIDTH DSQAPWID 18 WIDTH parameter. Its value is that of
the parameter. ('22' through '999')

QMF Global Variables

258 QMF: Developing QMF Applications

DSQ Global Variables for State Information Not Related to the Profile

None of these global variables can be modified by the SET GLOBAL
command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAO_APPL_TRACE DSQATRAC 01 Application trace level. Values can be:

0 for level A0

1 for level A1

2 for level A2

DSQAO_ATTENTION DSQCATTN 01 User attention flag.

DSQAO_BATCH DSQABATC 01 Batch or interactive mode. Value will be:

1 for an interactive session.

2 for a batch-mode session.

DSQAO_CONNECT_ID DSQAAUTH 08 The user ID used to connect to the
database. (This is the user ID under
which work is done.)

DSQAO_CONNECT_LOC none 18 The location name of the database to
which the user is currently connected.
The name is 18 characters (padded to the
right with blanks, if necessary).

DSQAO_CURSOR_OPEN DSQACRSR 01 Database cursor status. Values can be:

1 if the cursor is open.

2 if the cursor is closed.

DSQAO_DB_MANAGER DSQADBMG 01 Database manager. Values can be:

1 for DB2 for VM/ESA or
VSE/ESA

2 for DB2 for MVS/ESA

3 for workstation database
servers

DSQAO_DBCS DSQADBCS 01 DBCS support status. Values can be:

1 for DBCS support.

2 for no DBCS support.

QMF Global Variables

Appendix E. QMF Global Variable Tables 259

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAO_FORM_PANEL DSQASUBP 02 Current form panel. Values can be:

1 for FORM.MAIN

2 for FORM.COLUMN

3 for FORM.PAGE

4 for FORM.FINAL

5 for FORM.BREAK1

6 for FORM.BREAK2

7 for FORM.BREAK3

8 for FORM.BREAK4

9 for FORM.BREAK5

10 for FORM.BREAK6

11 for FORM.OPTIONS

12 for FORM.CALC

13 for FORM.DETAIL

14 for FORM.CONDITIONS

A blank value means the form does not
exist in QMF temporary storage.

DSQAO_INTERACT DSQAIACT 01 Setting of interact flag. Values can be:

0 for no interactive execution.

1 for interactive execution
allowed.

DSQAO_LOCAL_DB2 none 18 The location name of the local DB2
database. This is the location name for the
subsystem named in the variable
DSQAO_SUBSYS_ID.

In a remote unit of work environment,
DSQ_LOCAL_DB2 is the name of the
application requester. The name is 16
characters (padded to the right with
blanks, if necessary).

This field is blank if QMF is running in
the VM or VSE environment.

DSQAO_LOCATION DSQAITLO 16 Location name of the current object, if
any. This value is applicable only if a
three-part name was used.

DSQAO_NLF_LANG DSQALANG 01 National language of user. For the English
language environment, this is ‘E’.

QMF Global Variables

260 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAO_NUM_FETCHED DSQAROWS 16 Fetched data rows. Contains '0' when the
DATA object is empty.

DSQAO_OBJ_NAME DSQAITMN 18 The name of the table (contained in a
report), query, procedure, or form shown
on the currently displayed panel. If the
current panel does not display an object,
or if the displayed object has no name,
this variable contains blanks.

DSQAO_OBJ_OWNER DSQAITMO 08 The owner of the table (contained in a
report), query, procedure, or form shown
on the currently displayed panel. If the
current panel does not display an object,
or if the displayed object has no owner,
this variable contains blanks.

DSQAO_PANEL_TYPE DSQAITEM 01 Type of current panel. Values can be:

1 for HOME

2 for QUERY

3 for REPORT

4 for FORM

5 for PROC

6 for PROFILE

7 for CHART

8 for LIST

9 for Table Editor

A for GLOBALS

DSQAO_QMF_RELEASE DSQAREVN 02 Numeric release number of QMF. For
QMF Version 7, this is '12'.

DSQAO_QMF_VER_RLS DSQAQMF 10 Version and release of QMF.

v For QMF Version 7

v this is ‘QMF V7’.

DSQAO_QRY_SUBTYPE DSQASUBI 01 Query subtype. Values can be:

1 for a subtype of SQL

2 for a subtype of QBE

3 for a subtype of PROMPTED
Blank means the current panel is not
QUERY.

DSQAO_QUERY_MODEL DSQAMODL 01 Model of current query. Value can be '1'
for RELATIONAL

QMF Global Variables

Appendix E. QMF Global Variable Tables 261

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAO_SAME_CMD DSQACMDM 01 Values can be:

0 if the two commands aren’t the
same.

1 if the two commands are the
same.

DSQAO_SUBSYS_ID none 04 If QMF is running in TSO, this is the ID
of the local DB2 subsystem to which QMF
is attached.

If you specify a value for the DSQSUBS
program parameter from CMS or CICS,
this global variable contains that value.
This happens because the parameter is
tolerated and the value is not processed;
that is, the value is placed in the global
variable field and nothing is done with it.
This logic permits the same EXEC to be
used in multiple environments.

DSQAO_SYSTEM_ID DSQASYST 01 Current operating system. Values can be:

1 for VM/SP

2 for MVS/SP

3 for MVS/XA or MVS/ESA

4 for VM/XA or VM/ESA

5 for CICS

DSQAO_TERMINATE DSQCSESC 01 QMF termination flag. Values can be:

0 if the session was not marked.

1 if the session was marked.

DSQAO_VARIATION DSQAVARN 02 Form panel variation number. Blank
means FORM.DETAIL is not the current
panel.

DSQ Global Variables Associated with CICS

Of the variables in this table, only DSQAP_CICS_PQNAME and
DSQAP_CICS_PQTYPE can be modified by the SET GLOBAL command.

When the queue type is TD, the maximum length of the corresponding queue
name is 4. For example, if DSQAO_CICS_SQTYPE is TD, the maximum length
of DSQAO_CICS_SQNAME is 4.

QMF Global Variables

262 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQAP_CICS_PQNAME none 08 Names the CICS data queue to contain
the QMF print.

DSQAP_CICS_PQTYPE none 02 Type of CICS storage used to contain the
QMF print.

TS writes the QMF print to a CICS
temporary storage queue on an
“auxiliary” storage device. This
is the default.

TD writes the QMF print to a CICS
transient data queue.

DSQAO_CICS_SQNAME none 08 Names the CICS data queue to be used
as the spill file.

DSQAO_CICS_SQTYPE none 02 Type of CICS storage used to contain the
QMF spill file.

TS writes the QMF spill file to a
CICS temporary storage queue
on an “auxiliary” storage
device. This is the default.

TD writes the QMF spill file to a
CICS transient data queue.

DSQAO_CICS_TQNAME none 08 Names the CICS data queue to contain
the QMF trace.

DSQAO_CICS_TQTYPE none 02 Type of CICS storage used to contain the
QMF trace.

TS writes the QMF trace to a CICS
temporary storage queue on an
“auxiliary” storage device.

TD writes the QMF trace to a CICS
transient data queue. This is
the default.

DSQ Global Variables Related to a Message Produced by the Previous
Command

None of these global variables can be modified by the SET GLOBAL
command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQCM_MESSAGE DSQCIMSG 80 Message text

DSQCM_MSG_HELP DSQCIMID 08 ID of message help panel

DSQCM_MSG_NUMBER DSQCIMNO 08 Message number

QMF Global Variables

Appendix E. QMF Global Variable Tables 263

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQCM_SUB_TXT_nn DSQCIMnn 20 Substitution value nn

DSQCM_SUBST_VARS DSQCIM00 04 Number of substitution variables in the
message

DSQ Global Variables Associated with Table Editor

All of these global variables can be modified by the SET GLOBAL command.

If the CONFIRM option of the EDIT TABLE command is NO, the Table Editor
suppresses the display of all confirmation panels. If the CONFIRM option is
YES, the Table Editor determines which categories of confirmation are enabled
by checking the values of the global variables shown in this table.

The Table Editor defaults depend on the SAVE keyword from the EDIT
TABLE command:
v When SAVE=IMMEDIATE, the default for each category is to enable.
v When SAVE=END, the default for the DELETE, MODIFY, and

END/CANCEL categories is to enable; the default for the ADD and
CHANGE categories is to disable.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQCP_TEADD none 01 Displays a confirmation panel after an
ADD subcommand. Values can be:

0 panel is disabled.

1 panel is enabled.

2 panel is enabled or disabled
depending on the Table Editor
defaults. This is the default.

DSQCP_TECHG none 01 Displays a confirmation panel after a
CHANGE subcommand. Values can be:

0 panel is disabled.

1 panel is enabled.

2 panel is enabled or disabled
depending on the Table Editor
defaults. This is the default.

QMF Global Variables

264 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQCP_TEEND none 01 Displays a confirmation panel when the
user issues an END subcommand or a
CANCEL subcommand to terminate a
Table Editor subsession. The panel can
appear in several variations, depending
on whether or not END or CANCEL was
issued, whether modifications were made
to the database, and whether the screen
contained modified data when END or
CANCEL was issued. Values can be:

0 panel is disabled.

1 panel is enabled.

2 panel is enabled or disabled
depending on the Table Editor
defaults. This is the default.

DSQCP_TEDEL none 01 Displays a confirmation panel after a
DELETE subcommand. Values can be:

0 panel is disabled.

1 panel is enabled.

2 panel is enabled or disabled
depending on the Table Editor
defaults. This is the default.

DSQCP_TEDFLT none 01 The reserved character used to indicate
the default value for a column in the
Table Editor. Initially set to a plus sign
(+) character.

DSQCP_TEDFLT_DBCS none 04 The reserved DBCS character used to
indicate the default value for a graphic
string column in the Table Editor. The
value must be a four-byte, mixed string,
composed of one DBCS character,
preceded by the shift-out character, and
followed by the shift-in character. Initially
set to a DBCS plus sign (+) character.
Note that this global variable is used
only in a DBCS environment.

QMF Global Variables

Appendix E. QMF Global Variable Tables 265

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQCP_TEMOD none 01 Displays a confirmation panel when
displayed data is modified and a
PREVIOUS, CLEAR, SHOW CHANGE,
SHOW SEARCH, REFRESH, or NEXT
subcommand is issued. The resulting
panel includes the name of the
subcommand as part of the panel text.
Values can be:

0 panel is disabled.

1 panel is enabled.

2 panel is enabled or disabled
depending on the Table Editor
defaults.

DSQCP_TENULL none 01 The reserved character used to indicate
the null value for a column in the Table
Editor. Initially set to a hyphen (-)
character.

DSQCP_TENULL_DBCS none 04 The reserved DBCS character used to
indicate the null value (or, in the context
of search criteria, to indicate ignore) for a
graphic string column in the Table Editor.
The value must be a four-byte, mixed
string, composed of one DBCS character,
preceded by the shift-out character, and
followed by the shift-in character. Initially
set to a DBCS hyphen (-) character. Note
that this global variable is used only in a
DBCS environment.

DSQ Global Variables That Control How Information is Displayed on the Screen

All of these global variables can be modified by the SET GLOBAL command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQDC_COST_EST none 01 Optionally suppress database cost
estimate. Values can be:

0 = no—Do not display the cost
estimate.

1 = yes—Display the cost
estimate. This is the default.

QMF Global Variables

266 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQDC_CURRENCY none 18 The currency symbol used when the DC
edit code is specified. The value can be
a string with a length from 1 to 18
bytes. For English, the default is the
euro currency symbol. The default
varies for other languages. In a DBCS
environment, this value can be a mixed
string of SBCS and DBCS characters.
The total length of the mixed string,
including the shift-out and shift-in
characters, cannot exceed 18 bytes.

DSQDC_DISPLAY_RPT DSQADPAN 01 Display report after RUN QUERY.
Values can be:

0 if you don’t want QMF to
display the resulting report
from a RUN query command.
This is the default if QMF is
started interactively with
DSQQMFE or in BATCH
mode. Changing this variable
when QMF is started in
BATCH mode will not cause
any QMF screen to display.

1 if you want QMF to
automatically display the
report. This is the default if
QMF is started with the
callable interface. This can be
overridden with the
DSQADPAN program
parameter on the START
command.

This global variable is for applications
only. It has no effect when the RUN
QUERY command is entered on the
command line.

QMF Global Variables

Appendix E. QMF Global Variable Tables 267

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQDC_LIST_ORDER none 02 Sets the default sort order for objects in
a list of database objects. Values for the
first character can be:

1 The list will use the default
order

2 The list will be sorted by
object owner.

3 The list will be sorted by
object name.

4 The list will be sorted by
object type.

5 The list will be sorted by date
modified.

6 The list will be sorted by date
last used.

Values for the second character can be:

A The list will be sorted in
ascending order.

D The list will be sorted in
descending order.

This variable applies only to objects that
are listed as a result of the LIST
command. It does not apply to lists
produced in other contexts, such as
from a Display prompt panel, and it
does not apply to lists of tables.

QMF Global Variables

268 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQDC_SCROLL_AMT none 04 Sets the scroll amount for QMF panels.
Values can be:

Csr Sets scroll amount to cursor.
Depending on whether the
user scrolls backward,
forward, left, or right, QMF
scrolls the line or column
where the cursor is positioned
to the bottom, top, far left, or
far right of the scrollable area.

Half Sets scroll amount to half the
scrollable area.

Page Sets scroll amount to a full
page. This is the default.

n Sets scroll amount to n
number of lines or columns. n
can be any number from 1 to
9999.

DSQDC_SHOW_PANID DSQCPDSP 01 Display panel IDs on CUA-like panels.
Values can be:

0 Suppress panel identifiers.
This is the default.

1 Display panel identifiers.

DSQ Global Variables That Control How Commands and Procedures Are
Executed

All of these global variables can be modified by the SET GLOBAL command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQEC_ALIASES none 31 View for retrieving lists of table and
view aliases when the user requests a
list of tables from a DB2 for MVS/ESA
location or if the current server is DB2
for MVS/ESA, or a workstation
database server.

DSQEC_COLS_LDB2 none 31 View for retrieving column information
for a table at the current location, if that
location is DB2.

DSQEC_COLS_RDB2 none 31 View for retrieving column information
for a table at a remote DB2 location (if it
is not the current location).

QMF Global Variables

Appendix E. QMF Global Variable Tables 269

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQEC_COLS_SQL none 31 View for retrieving column information
for a table in a DB2 for VM/ESA or
VSE/ESA database.

DSQEC_FORM_LANG none 01 Establishes the default NLF language in
a saved or exported form. Values can be:

0 The form will use the
presiding NLF language.

1 The form will use English.
This is the default.

DSQEC_ISOLATION none 01 Default Query isolation level. Values can
be:

0 Isolation level UR,
Uncommitted Read.

1 Isolation level CS, Cursor
Stability. This is the default.

Attention: Setting the value to ’0’ can
introduce non-existent data into a QMF
report. Do not set the value to ’0’ if your
QMF reports must be free of
non-existent data.
Limited support: For QMF 7.1 the use
of the value ’0’ is only effective with the
following database servers (those
supporting the SQL WITH clause):

v DB2 for MVS V4 or higher

v DB2 for VM/VSE V4 or higher

DSQEC_NLFCMD_LANG none 01 Set expected NLF language for
commands. Values can be:

0 Commands must be in the
presiding NLF language. This
is the default.

1 Commands must be in
English.

QMF Global Variables

270 QMF: Developing QMF Applications

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQEC_RERUN_IPROC none 01 Rerun invocation procedure after the
END command. Values can be:

0 Suppress rerun of invocation
procedure after the END
command.

1 Rerun the invocation
procedure after the END
command. This is the default.

If you start QMF with an invocation
procedure, then set this variable to '0',
QMF terminates instead of rerunning
the procedure.

DSQEC_RESET_RPT none 31 Determines whether or not QMF
prompts the user when an incomplete
DATA object in temporary storage
appears to be affecting performance.
Possible values are:

0 Reset Report Prompt Panel is
not displayed and QMF
completes the running report.
This is the default value.

1 Reset Report Prompt Panel is
displayed. This panel prompts
the user to complete or reset
the currently running report
before starting the new
command.

2 Reset Report Prompt Panel is
not displayed and QMF resets
the currently running report.

DSQEC_SHARE none 31 Specifies the default value for the
SHARE parameter. The possible values
are:

0 Do not share data with other
users.

1 Do share data with other
users.

DSQEC_TABS_LDB2 none 31 View for retrieving lists of tables and
views at the current server, if it is DB2
for MVS/ESA, or a workstation
database server.

DSQEC_TABS_RDB2 none 31 View for retrieving lists of tables and
views at remote DB2 subsystems.

QMF Global Variables

Appendix E. QMF Global Variable Tables 271

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQEC_TABS_SQL none 31 View for retrieving lists of tables and
views for a DB2 for VM/ESA or
VSE/ESA database.

DSQ Global Variables That Show Results of CONVERT QUERY

None of these global variables can be modified by the SET GLOBAL
command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQQC_LENGTH_nnn DSQCLnnn 05 Length of converted result nnn

DSQQC_QRY_COUNT DSQCQCNT 03 Number of queries in converted result.
Value must always be '1' unless the
original query is a QBE I. or U. query.

DSQQC_QRY_LANG DSQCQLNG 01 Language of converted query. Values can
be:

1 for SQL

2 for QBE

3 for prompted

DSQQC_QRY_TYPE DSQCQTYP not specified First word in converted results

DSQQC_RESULT_nnn DSQCQnnn not specified Converted result nnn

DSQ Global Variables That Show RUN QUERY Error Message Information

None of these global variables can be modified by the SET GLOBAL
command.

Callable Interface Variable
Name

Command Interface
Variable Name

Length Description

DSQQM_MESSAGE DSQCIQMG 80 Text of query message

DSQQM_MSG_HELP DSQCIQID 08 ID of message help panel

DSQQM_MSG_NUMBER DSQCIQNO 08 Message number

DSQQM_SQL_RC DSQCISQL 16 The SQLCODE from the last command
or query.

DSQQM_SQL_STATE none 05 The SQLSTATE associated with the
SQLCODE in DSQQM_SQL_RC, if
SQLSTATE is returned by the database
manager.

DSQQM_SUB_TXT_nn DSQCIQnn 20 Substitution value nn

DSQQM_SUBST_VARS DSQCIQ00 04 Number of substitution variables

QMF Global Variables

272 QMF: Developing QMF Applications

Appendix F. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes willLicensing2-31J
T*
[(iio:)n; theseherein; t1Hio(t1(Asia)-333(Corporation)]T“ain;)-333aT

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

274 QMF: Developing QMF Applications

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Appendix F. Notices 275

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
Advanced Peer-to-Peer

Networking
AIX
AIX/6000
AS/400
C/370
CICS
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/370
DATABASE 2
DataJoiner
DB2
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
DXT
GDDM
IBM

IBMLink
IMS
Language Environment
MVS
MVS/ESA
MVS/XA
OfficeVision/VM
OS/2
OS/390
PL/I
PROFS
QMF
RACF
S/390
SQL/DS
Virtual Machine/Enterprise

Systems Architecture
Visual Basic
VM/XA
VM/ESA
VSE/ESA
VTAM

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other counrtries, or both.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation in the
Unites States, other counrties, or both.

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

276 QMF: Developing QMF Applications

Glossary of Terms and Acronyms

This glossary defines terms as they are used throughout the QMF library. If
you do not find the term you are looking for, refer to the index in this book,
or to the IBM Dictionary of Computing.

abend. The abnormal termination of a task.

ABENDx. The keyword for an abend problem.

Advanced Peer-to-Peer Networking. A distributed network and session control architecture that allows
networked computers to communicate dynamically as equals. Compare with Advanced
Program-to-Program Communication (APPC). An implementation of the SNA synchronous data link
control LU 6.2 protocol that allows interconnected systems to communicate and share the processing of
programs.

Advanced Program-to-Program Communication (APPC). An implementation of the SNA synchronous
data link control LU 6.2 protocol that allows interconnected systems to communicate and share the
processing of programs.

aggregation function. Any of a group of functions that summarizes data in a column. They are
requested with these usage codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST,
MAXIMUM, MINIMUM, STDEV, SUM, CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable. An aggregation function that is placed in a report using either the
FORM.BREAK, FORM.CALC, FORM.DETAIL, or FORM.FINAL panels. Its value appears as part of the
break footing, detail block text, or final text when the report is produced.

alias. In DB2 UDB for OS/390, an alternate name that can be used in SQL statements to refer to a table
or view in the same or a remote DB2 UDB for OS/390 subsystem. In OS/2, an alternate name used to
identify a object, a database, or a network resource such as an LU. In QMF, a locally defined name used
to access a QMF table or view stored on a local or remote DB2 UDB for OS/390 subsystem.

APAR. Authorized Program Analysis Report.

APPC. Advanced Program-to-Program Communication

application. A program written by QMF users that extends the capabilities of QMF without modifying
the QMF licensed program. Started from a QMF session by issuing a RUN command for a QMF
procedure, an installation-defined command, or a CMS or TSO command that invokes an EXEC or
CLIST, respectively.

application requester. (1) A facility that accepts a database request from an application process and
passes it to an application server. (2) In DRDA, the source of a request to a remote relational database
management system.

The application requester is the DBMS code that handles the QMF end of the distributed connection.
The local DB2 UDB for OS/390 subsystem to which QMF attaches is known as the application requester
for QMF, because DB2 UDB for OS/390’s application requester is installed within the local database

© Copyright IBM Corp. 1983, 2002 277

manager. Therefore, an entire DB2 UDB for OS/390 subsystem (including data) is associated with the
application requester, but the SQL statements are processed at the current location. This subsystem is
called the “local DB2 UDB for OS/390”.

With DB2 for VM and VSE the application requester runs in the same virtual machine as QMF; that is,
no database is inherently associated with the DB2 for VM and VSE application requester.

application server. The target of a request from an application requester. (1) The local or remote
database manager to which the application process is connected. The application server executes at the
system containing the desired data. (2) In DRDA, the target of a request from an application requester.
With DB2 UDB for OS/390, the application server is part of a full DB2 UDB for OS/390 subsystem.

With DB2 for VM and VSE, the application server is part of a DB2 for VM and VSE database machine.

application-support command. A QMF command that can be used within an application program to
exchange information between the application program and QMF. These commands include INTERACT,
MESSAGE, STATE, and QMF.

area separator. The barrier that separates the fixed area of a displayed report from the remainder of the
report.

argument. An independent variable.

base QMF environment. The English-language environment of QMF, established when QMF is
installed. Any other language environment is established after installation.

batch QMF session. A QMF session running in the background. Begins when a specified QMF
procedure is invoked and ends when the procedure ends. During a background QMF session, no user
interaction and panel display interaction are allowed.

bind. In DRDA, the process by which the SQL statements in an application program are made known
to a database management system over application support protocol (and database support protocol)
flows. During a bind, output from a precompiler or preprocessor is converted to a control structure
called a package. In addition, access paths to the referenced data are selected and some authorization
checking is performed. (Optionally in DB2 UDB for OS/390, the output may be an application plan.)

built-in function. Generic term for scalar function or column function. Can also be “function.”

calculation variable. CALCid is a special variable for forms that contains a user-defined calculated
value. CALCid is defined on the FORM.CALC panel.

callable interface. A programming interface that provides access to QMF services. An application can
access these services even when the application is running outside of a QMF session. Contrast with
command interface.

chart. A graphic display of information in a report.

CICS. Customer Information Control System.

client. A functional unit that receives shared services from a server.

CMS. Conversational Monitor System.

Glossary

278 QMF: Developing QMF Applications

column. A vertical set of tabular data. It has a particular data type (for example, character or numeric)
and a name. The values in a column all have the same data characteristics.

column function. An operation that is applied once to all values in a column, returns a single value as
a result, and is expressed in the form of a function name followed by one or more arguments enclosed
in parentheses.

column heading. An alternative to the column name that a user can specify on a form. Not saved in
the database, as are the column name and label.

column label. An alternative descriptor for a column of data that is saved in the database. When used,
column labels appear by default on the form, but they can be changed by users.

column wrapping. Formatting values in a report so that they occupy several lines within a column.
Often used when a column contains values whose length exceeds the column width.

command interface. An interface for running QMF commands. The QMF commands can only be issued
from within an active QMF session. Contrast with callable interface.

command synonym. The verb or verb/object part of an installation-defined command. Users enter this
for the command, followed by whatever other information is needed.

command synonym table. A table each of whose rows describes an installation-defined command. Each
user can be assigned one of these tables.

commit. The process that makes a data change permanent. When a commit occurs, data locks are freed
enabling other applications to reference the just-committed data. See also “rollback”.

concatenation. The combination of two strings into a single string by appending the second to the first.

connectivity. The enabling of different systems to communicate with each other. For example,
connectivity between a DB2 UDB for OS/390 application requester and a DB2 for VM and VSE
application server enables a DB2 UDB for OS/390 user to request data from a DB2 for VM and VSE
database.

conversation. A logical connection between two programs over an LU 6.2 session that allows them to
communicate with each other while processing a transaction.

correlation name. An alias for a table name, specified in the FROM clause of a SELECT query. When
concatenated with a column name, it identifies the table to which the column belongs.

CP. The Control Program for VM.

CSECT. Control section.

current location. The application server to which the QMF session is currently connected. Except for
connection-type statements, such as CONNECT (which are handled by the application requester), this
server processes all the SQL statements. When initializing QMF, the current location is indicated by the
DSQSDBNM startup program parameter. (If that parameter is not specified, the local DB2 UDB for
OS/390 subsystem

current object. An object in temporary storage currently displayed. Contrast with saved object.

Glossary

Glossary of Terms and Acronyms 279

Customer Information Control System (CICS). An IBM licensed program that enables transactions
entered at remote terminals to be processed concurrently by user-written application programs. It
includes facilities for building, using, and maintaining databases.

DATA. An object in temporary storage that contains the information returned by a retrieval query.
Information represented by alphanumeric characters contained in tables and formatted in reports.

database. A collection of data with a given structure for accepting, storing, and providing on demand
data for multiple users. In DB2 UDB for OS/390, a created object that contains table spaces and index
spaces. In DB2 for VM and VSE, a collection of tables, indexes, and supporting information (such as
control information and data recovery information) maintained by the system. In OS/2, a collection of
information, such as tables, views, and indexes.

database administrator. The person who controls the content of and access to a database.

database management system. A computer-based system for defining, creating, manipulating,
controlling, managing, and using databases. The database management system also has transaction
management and data recovery facilities to protect data integrity.

database manager. A program used to create and maintain a database and to communicate with
programs requiring access to the database.

database server. (1) In DRDA, the target of a request received from an application server (2) In OS/2, a
workstations that provides database services for its local database to database clients.

date. Designates a day, month, and year (a three-part value).

date/time default formats. Date and time formats specified by a database manager installation option.
They can be the EUR, ISO, JIS, USA, or LOC (LOCAL) formats.

date/time data. The data in a table column with a DATE, TIME, or TIMESTAMP data type.

DB2 UDB for OS/390. DB2 Universal Database for OS/390 (an IBM relational database management
system).

DB2 for AIX. DATABASE2 for AIX. The database manager for QMF’s relational data.

DBCS. Double-byte character set.

DBMS. Database management system.

default form. The form created by QMF when a query is run. The default form is not created if a saved
form is run with the query.

destination control table (DCT). In CICS, a table containing a definition for each transient data queue.

detail block text. The text in the body of the report associated with a particular row of data.

detail heading text. The text in the heading of a report. Whether or not headings will be printed is
specified in FORM.DETAIL.

dialog panel. A panel that overlays part of a Prompted Query primary panel and extends the dialog
that helps build a query.

Glossary

280 QMF: Developing QMF Applications

distributed data. Data that is stored in more than one system in a network, and is available to remote
users and application programs.

distributed database. A database that appears to users as a logical whole, locally accessible, but is
comprised of databases in multiple locations.

distributed relational database. A distributed database where all data is stored according to the
relational model.

Distributed Relational Database Architecture. A connection protocol for distributed relational database
processing that is used by IBM and vendor relational database products.

distributed unit of work. A method of accessing distributed relational data in which users or
applications can, within a single unit of work, submit SQL statements to multiple relational database
management systems, but no more than one RDBMS per SQL statement.

DB2 UDB for OS/390 introduced a limited form of distributed unit of work support in its V2R2 called
system-directed access, which QMF supports.

DOC. The keyword for a document problem.

double-byte character. An entity that requires two character bytes.

double-byte character set (DBCS). A set of characters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and Korean, which contain more symbols that can be
represented by 256 code points, require double-byte character sets. Because each character requires two
bytes, the typing, display, and printing of DBCS characters requires hardware and programs that support
DBCS. Contrast with single-byte character set.

DRDA. Distributed Relational Database Architecture.

duration. An amount of time expressed as a number followed by one of seven keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, MICROSECONDS.

EBCDIC. Extended Binary-Coded Decimal Interchange Code.

echo area. The part of the Prompted Query primary panel in which a prompted query is built.

EUR (European) format. A format that represents date and time values as follows:

v Date: dd.mm.yyyy

v Time: hh.mm.ss

extended syntax. QMF command syntax that is used by the QMF callable interface; this syntax defines
variables that are stored in the storage acquired by the callable interface application and shared with
QMF

example element. A symbol for a value to be used in a calculation or a condition in a QBE query.

example table. The framework of a QBE query.

fixed area. That part of a report that contains fixed columns.

Glossary

Glossary of Terms and Acronyms 281

fixed columns. The columns of a report that remain in place when the user scrolls horizontally. On
multiple-page, printed reports, these columns are repeated on the left side of each page.

form. An object that contains the specifications for printing or displaying a report or chart. A form in
temporary storage has the name of FORM.

function key table. A table containing function key definitions for one or more QMF panels, along with
text describing the keys. Each user can be assigned one of these tables.

gateway. A functional unit that connects two computer networks of different network architectures. A
gateway connects networks or systems of different architectures, as opposed to a bridge, which connects
networks or systems with the same or similar architectures.

GDDM. Graphical Data Display Manager.

global variable. A variable that, once set, can be used for an entire QMF session. A global variable can
be used in a procedure, query, or form. Contrast with run-time variable.

Graphical Data Display Manager. A group of routines that allows pictures to be defined and displayed
procedurally through function routines that correspond to graphic primitives.

grouped row. A row of data in a QBE target or example table that is summarized either by a G. or a
built-in function.

HELP. Additional information about an error message, a QMF panel, or a QMF command and its
options.

host. A mainframe or mid-size processor that provides services in a network to a workstation.

HTML. Hypertext Markup Language. A standardized markup language for documents displayed on
the World Wide Web.

ICU. Interactive Chart Utility.

INCORROUT. The keyword for incorrect output.

index. A collection of data about the locations of records in a table, allowing rapid access to a record
with a given key.

initial procedure. A QMF procedure specified by the DSQSRUN parameter on the QMF start command
which is executed immediately after QMF is invoked.

initialization program. A program that sets QMF program parameters. This program is specified by
DSQSCMD in the callable interface. The default program for interactive QMF is DSQSCMDn, where n is
the qualifier for the presiding language ('E' for English).

installation-defined command. A command created by an installation. QMF will process it as one of its
own commands or as a combination of its commands.

installation-defined format. Date and time formats, also referred to as LOCAL formats, that are
defined (or built) by the installation.

Glossary

282 QMF: Developing QMF Applications

interactive execution. Execution of a QMF command in which any dialog that should take place
between the user and QMF during the command’s execution actually does take place.

interactive session. Any QMF session in which the user and QMF can interact. Could be started by
another interactive session by using the QMF INTERACT command.

interactive switch. A conceptual switch which, when on, enables an application program to run QMF
commands interactively.

invocation CLIST or EXEC. A program that invokes (starts) QMF.

ISO (International Standards Organization) format. A format that represents date and time values as
follows:

v Date: yyyy-mm-dd

v Time: hh.mm.ss

ISPF. Interactive System Productivity Facility.

IXF. Integration Exchange Format: A protocol for transferring tabular data among various software
products.

JCL. Job control language for OS/390.

job control. In VSE, a program called into storage to prepare each job or job step to be run. Some of its
functions are to assign I/O devices to symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first phase of each job step.

JIS (Japanese Industrial Standard) format. A format that represents date and time values as follows:

v Date: yyyy-mm-dd

v Time: hh:mm:ss

join. A relational operation that allows retrieval of data from two or more tables based on matching
columns that contain values of the same data type.

keyword parameter. An element of a QMF command consisting of a keyword and an assigned value.

like. Pertaining to two or more similar or identical IBM operating environments. For example, like
distribution is distribution between two DB2 UDB for OS/390’s with compatible server attribute levels.
Contrast with “unlike”.

literal. In programming languages, a lexical unit that directly represents a value. A character string
whose value is given by the characters themselves.

linear procedure. Any procedure not beginning with a REXX comment. A linear procedure can contain
QMF commands, comments, blank lines, RUN commands, and substitution variables. See also
“procedure with logic.”

linear syntax. QMF command syntax that is entered in one statement of a program or procedure, or
that can be entered on the QMF command line.

Glossary

Glossary of Terms and Acronyms 283

line wrapping. Formatting table rows in a report so they occupy several lines. The row of column
names and each row of column values are split into as many lines as are required by the line length of
the report.

local. Pertaining to the relational database, data, or file that resides in the user’s processor. See also
“local DB2 UDB for OS/390”, and contrast with remote.

local area network (LAN). (1) Two or more processors connected for local resource sharing (2) A
network within a limited geographic area, such as a single office building, warehouse, or campus.

local data. Data that is maintained by the subsystem that is attempting to access the data. Contrast
with remote data.

local DB2 UDB for OS/390. With DB2 UDB for OS/390, the application requester is part of a DB2 UDB
for OS/390 subsystem that is running in the same MVS system as QMF. Therefore, an entire DB2 UDB
for OS/390 subsystem (including data) is associated with the application requester, but the SQL
statements are processed at the current location. This subsystem is where the QMF plan is bound.

When QMF runs in TSO, this subsystem is specified using DSQSSUBS startup program parameter. When
QMF runs in CICS, this subsystem is identified in the Resource Control Table (RCT). The local DB2 UDB
for OS/390 is the subsystem ID of the DB2 UDB for OS/390 that was started in the CICS region.

location. A specific relational database management system in a distributed relational database system.
Each DB2 UDB for OS/390 subsystem is considered to be a location.

logical unit (LU). A port through which an end user accesses the SNA network to communicate with
another end user and through which the end user accesses the functions provided by system services
control points.

Logical Unit type 6.2 (LU 6.2). The SNA logical unit type that supports general communication
between programs in a distributed processing environment.

LU. Logical unit.

LU 6.2. Logical Unit type 6.2.

LOOP. The keyword for an endless-loop problem.

MSGx. The keyword for a message problem.

Multiple Virtual Storage. Implies the MVS/ESA product

MVS/ESA. Multiple Virtual Storage/Enterprise System Architecture (IBM operating system).

NCP. Network Control Program.

Network Control Program (NCP). An IBM licensed program that provides communication controller
support for single-domain, multiple-domain, and interconnected network capability.

NLF. National Language Feature. Any of several optional features available with QMF that lets the user
select a language other than US English.

NLS. National Language Support.

Glossary

284 QMF: Developing QMF Applications

node. In SNA, an end point of a link or a junction common to two or more links in a network. Nodes
can be distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional capabilities.

null. A special value used when there is no value for a given column in a row. Null is not the same as
zero.

null value. See null.

object. A QMF query, form, procedure, profile, report, chart, data, or table. The report, chart, and data
objects exist only in temporary storage; they cannot be saved in a database. The table object exists only
in a database.

object name. A character string that identifies an object owned by a QMF user. The character string can
be a maximum of 18 bytes long and must begin with an alphabetic character. The term “object name”
does not include the “owner name” prefix. Users can access other user’s objects only if authorized.

object panel. A QMF panel that can appear online after the execution of one QMF command and
before the execution of another. Such panels include the home, report, and chart panels, and all the
panels that display a QMF object. They do not include the list, help, prompt, and status panels.

online execution. The execution of a command from an object panel or by pressing a function key.

owner name. The authorization id of the user who creates a given object.

package. The control structure produced when the SQL statements in an application program are
bound to a relational database management system. The database management system uses the control
structure to process SQL statements encountered during statement execution.

panel. A particular arrangement of information, grouped together for presentation in a window. A
panel can contain informational text, entry fields, options the user can choose from, or a mixture of
these.

parameter. An element of a QMF command. This term is used generically in QMF documentation to
reference a keyword parameter or a positional parameter.

partner logical unit. In SNA, the remote system in a session.

PERFM. The keyword for a performance problem.

permanent storage. The database where all tables and QMF objects are stored.

plan. A form of package where the SQL statements of several programs are collected together during
bind to create a plan.

positional parameter. An element of a QMF command that must be placed in a certain position within
the command.

primary panel. The main Prompted Query panel containing your query.

primary QMF session. An interactive session begun from outside QMF Within this session, other
sessions can be started by using the INTERACT command.

Glossary

Glossary of Terms and Acronyms 285

procedure. An object that contains QMF commands. It can be run with a single RUN command. A
procedure in temporary storage has the name of PROC. See also “linear procedure” and “procedure with
logic.”

procedure termination switch. A conceptual switch that a QMF MESSAGE command can turn on.
While on, every QMF procedure to which control returns terminates immediately.

procedure with logic. Any QMF procedure beginning with a REXX comment. In a procedure with
logic, you can perform conditional logic, make calculations, build strings, and pass commands back to
the host environment. See also “linear procedure.”

profile. An object that contains information about the characteristics of the user’s session. A stored
profile is a profile that has been saved in permanent storage. A profile in temporary storage has the
name PROFILE. There can be only one profile for each user.

prompt panel. A panel that is displayed after an incomplete or incorrect QMF command has been
issued.

Prompted Query. A query built in accordance with the user’s responses to a set of dialog panels.

protocol. The rules governing the functions of a communication system that must be followed if
communication is to be achieved.

PSW. Program status word.

PTF. Program temporary fix.

QBE (Query-By-Example). A language used to write queries graphically. For more information see
Using QMF

QMF administrative authority. At minimum, insert or delete priviledge for the Q.PROFILES control
table.

QMF administrator. A QMF user with QMF administrative authority.

QMF command. Refers to any command that is part of the QMF language. Does not include
installation-defined commands.

QMF session. All interactions between the user and QMF from the time the user invokes QMF until
the EXIT command is issued.

qualifier. When referring to a QMF object, the part of the name that identifies the owner. When
referring to a TSO data set, any part of the name that is separated from the rest of the name by periods.
For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name ‘TCK.XYZ.QUERY’.

query. An SQL or QBE statement, or a statement built from prompting, that performs data inquiries or
manipulations. A saved query is an SQL query, QBE query, or Prompted Query that has been saved in a
database. A query in temporary storage, has the name QUERY.

RDBMS. Relational database management system

relational database. A database perceived by its users as a collection of tables.

Glossary

286 QMF: Developing QMF Applications

relational database management system (RDBMS). A computer-based system for defining, creating,
manipulating, controlling, managing, and using relational databases.

remote. Pertaining to a relational DBMS other than the local relational DBMS.

remote data. Data that is maintained by a subsystem other than the subsystem that is attempting to
access the data. Contrast with local data.

remote data access. Methods of retrieving data from remote locations. The two remote data access
functions used by QMF are remote unit of work and DB2 UDB for OS/390-only distributed unit of work,
which is called system-directed access.

remote unit of work. (1) The form of SQL distributed processing where the application is on a system
different from the relational database and a single application server services all remote unit of work
requests within a single logical unit of work. (2) A unit of work that allows for the remote preparation

single-byte character. A character whose internal representation consists of one byte. The letters of the
Latin alphabet are examples of single-byte characters.

SNA. Systems Network Architecture.

SNAP dump. A dynamic dump of the contents of one or more storage areas that QMF generates
during an abend.

sort priority. A specification in a retrieval query that causes the sorted values in one retrieved column
to determine the sorting of values in another retrieved column.

SQL. Structured Query Language.

SQLCA. Structured Query Language Communication Area.

SSF. Software Support Facility. An IBM online database that allows for storage and retrieval of
information about all current APARs and PTFs.

stored object. An object that has been saved in permanent storage. Contrast with current object.

string. A set of consecutive items of a similar type; for example, a character string.

Structured Query Language. A language used to communicate with DB2 UDB for OS/390 and DB2 for
VSE or VM. Used to write queries in descriptive phrases.

subquery. A complete SQL query that appears in a WHERE or HAVING clause of another query (the
main query or a higher-level subquery).

substitution variable. (1) A variable in a procedure or query whose value is specified either by a global
variable or by a run-time variable. (2) A variable in a form whose value is specified by a global variable.

substring. The part of a string whose beginning and length are specified in the SUBSTR function.

System Log (SYSLOG). A data set or file in which job-related information, operational data,
descriptions of unusual occurrences, commands, and messages to and from the operator may be stored.

Systems Network Architecture. The description of the logical structure, formats, protocols, and
operational sequences for transmitting information units through and controlling the configuration and
operation of networks.

table. A named collection of data under the control of the relational database manager. A table consists
of a fixed number of rows and columns.

Table Editor. The QMF interactive editor that lets authorized users make changes to a database without
having to write a query.

table name area. The leftmost column of a QBE example table.

tabular data. The data in columns. The content and the form of the data is specified on FORM.MAIN
and FORM.COLUMNS.

target table. An empty table in which example elements are used to combine columns, combine rows,
or include constant values in a report.

Glossary

288 QMF: Developing QMF Applications

temporary storage. An area where the query, form, procedure, profile, report, chart, and data objects in
current use are stored. All but the data object can be displayed.

temporary storage queue. In CICS, a temporary storage area used for transfer of objects between QMF
and an application or a system service.

time. Designates a time of day in hours and minutes and possibly seconds (a two- or three-part value).

thread. The DB2 UDB for OS/390 structure that describes an application’s connection, traces its
progress, provides resource function processing capability, and delimits its accessibility to DB2 UDB for
OS/390 resources and services. Most DB2 UDB for OS/390 functions execute under a thread structure.

three-part name. A fully-qualified name of a table or view, consisting of a location name, owner ID,
and object name. When supported by the application server (that is, DB2 UDB for OS/390), a three-part
name can be used in an SQL statement to retrieve or update the specified table or view at the specified
location.

timestamp. A date and a time, and possibly a number of microseconds (a six- or seven-part value).

TP. Transaction Program

TPN. Transaction program name

transaction. The work that occurs between 'Begin Unit of Work' and 'Commit' or 'Rollback'.

transaction program. A program that processes transactions in an SNA network. There are two kinds of
transactions programs: application transaction programs and service transaction programs.

transaction program name. The name by which each program participating in an LU 6.2 conversation
is known. Normally, the initiator of a connection identifies the name of the program it wants to connect
to at the other LU. When used in conjunction with an LU name, it identifies a specific transaction
program in the network.

transient data queue. In CICS, a storage area, whose name is defined in the Destination Control Table
(DCT), where objects are stored for subsequent internal or external processing.

TSO. Time Sharing Option.

two-phase commit. A protocol used in distributed unit of work to ensure that participating relational
database management systems commit or roll back a unit of work consistently.

unit of work. (1) A recoverable sequence of operations within an application process. At any time, an
application process is a single unit of work, but the life of an application process may involve many
units of work as a result of commit or rollback operations. (2) In DRDA, a sequence of SQL commands
that the database manager treats as a single entity. The database manager ensures the consistency of data
by verifying that either all the data changes made during a unit of work are performed or none of them
are performed.

unlike. Refers to two or more different IBM operating environments. For example, unlike distribution is
distribution between DB2 for VM and VSE and DB2 UDB for OS/390. Contrast with like.

unnamed column. An empty column added to an example table. Like a target table, it is used to
combine columns, combine rows, or include constant values in a report.

Glossary

Glossary of Terms and Acronyms 289

USA (United States of America) format. A format that represents date and time values as follows:

v Date: mm/dd/yyyy

v Time: hh:mm xM

value. A data element with an assigned row and column in a table.

variation. A data formatting definition specified on a FORM.DETAIL panel that conditionally can be
used to format a report or part of a report.

view. An alternative representation of data from one or more tables. It can include all or some of the
columns contained in the table or tables on which it is defined. (2) The entity or entities that define the
scope of the data to be searched for a query.

Virtual Storage Extended. An operating system that is an extension of Disk Operating System/ Virtual
Storage. A VSE consists of (1) VSE/Advanced Functions support and (2) any IBM-supplied and
user-written programs that are required to meet the data processing needs of a user. VSE and the
hardware it controls form a complete computing system.

VM. Virtual Machine (IBM operating system). The generic term for the VM/ESA environment.

VSE. Virtual Storage Extended (IBM operating system). The generic term for the VSE/ESA
environment.

WAIT. The keyword for an endless-wait-state problem.

window. A rectangular portion of the screen in which all or a portion of a panel is displayed. A
window can be smaller than or equal to the size of the screen.

Workstation Database Server. The IBM family of DRDA database products on the UNIX and Intel
platforms (such as DB2 Universal Database (UDB), DB2 Common Server, DB2 Parallel Edition, and
DataJoiner.)

wrapping. See “column wrapping” and “line wrapping”.

Glossary

290 QMF: Developing QMF Applications

Bibliography

The following lists do not include all the books for a particular library. To get
copies of any of these books, or to get more information about a particular
library, contact your IBM representative.

For a list of QMF publications, see “The QMF Library” on page v.

APPC Publications

v Communicating with APPC and CPI-C: A Technical Overview

v Networking with APPC: An Overview

CICS Publications

CICS Transaction Server for OS390

v CICS/OS390 User’s Handbook

v CICS/OS390 Application Programmers Reference

v CICS/OS390 Application Programming Guide

v CICS/OS390 DB2 Guide

v CICS/OS390 Resource Definition (Macro)

v CICS/OS390 Resource Definition (Online)

v CICS/OS390 Problem Determination Guide

v CICS/OS390 System Definition Guide

v CICS/OS390 Intercommunication Guide

v CICS/OS390 Performance Tuning Handbook

CICS for VSE

v CICS for VSE/ESA User’s Handbook

v CICS for VSE/ESA Application Programmer’s Reference

v CICS for VSE/ESA Application Programming Guide

v CICS for VSE/ESA Resource Definition (Macro)

v CICS for VSE/ESA Resource Definition (Online)

v CICS for VSE/ESA Problem Determination Guide

v CICS/OS390 System Definition Guide

v CICS for VSE/ESA Intercommunication Guide

v CICS for VSE/ESA Performance Tuning Handbook

© Copyright IBM Corp. 1983, 2002 291

COBOL Publications

v VS COBOL II Application Programming Guide for VSE

v COBOL/VSE Language Reference

v COBOL/VSE Programming Guide

DATABASE 2 Publications

DB2 UDB for OS390

v DB2 UDB for OS390 Installation Guide

v DB2 UDB for OS390 Administration Guide

v DB2 UDB for OS390 SQL Reference

v DB2 UDB for OS390 Command Reference

v DB2 UDB for OS390 Application Programming and SQL Guide

v DB2 UDB for OS390 Message and Codes

v DB2 UDB for OS390 Uitility Guide and Reference

v DB2 UDB for OS390 Call Level Interface Guide and Reference

v DB2 UDB for OS390 Reference for Remote DRDA Requesters and Servers

DB2 for VSE & VM

v DB2 Server for VM Installation Guide

v DB2 Server for VSE Installation Guide

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Interactive SQL Guide and Reference

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VM Message and Codes

v DB2 Server for VSE Message and Codes

v DB2 Server for VSE & VM Diagnostic Guide and Reference

v DB2 Server for VSE & VM Performance Tuning Handbook

DB2 for AS/400

v DB2 for AS/400 SQL Reference

v DB2 for AS/400 SQL Programming

Parallel Edition

Bibliography

292 QMF: Developing QMF Applications

v DB2 Parallel Edition Administration Guide and Reference

DB2 Universal Database

v DB2 Universal Database Command Reference

v DB2 Universal Database SQL Reference

v DB2 Universal Database Message Reference

DataJoiner

v DataJoiner Application Programming and SQL Reference Supplement

DCF Publications

v DCF and DLF General Information

DRDA Publications

v DRDA Every Manager’s Guide

v DRDA Connectivity Guide

DXT Publications

v DXT Guide to Dialogs

v Data Extract: Planning and Administration Guide for Dialogs

v Data Extract: Users Guide

v Learning to Use DXT

Graphical Data Display Manager (GDDM) Publications

v GDDM General Information

v GDDM Base Programming Reference

v GDDM Base Programming Guide

v GDDM Guide for Users

v GDDM Installation and System Management for VSE

v GDDM Messages

HLASM Publications

v IBM High-Level Assembler Programmer’s Guide for OS/390, VM and VSE

v IBM High-Level Assembler Language Reference for OS/390, VM and VSE

Bibliography

Bibliography 293

ISPF/PDF Publications

OS/390

v Interactive System Productivity Facility for OS/390 Installation and Customization

v Interactive System Productivity Facility for OS/390 Dialog Management Guide

v Interactive System Productivity Facility for OS/390 Dialog Management Services
and Examples

VM

v ISPF for VM Dialog Management Services and Examples

OS/390 Publications

Utilities

v OS/390 Administration: Utilities

v OS/390 Extended Architecture Utilities

JCL

v OS/390 Extended Architecture JCL Reference

v OS/390 Extended Architecture JCL User’s Guide

v OS/390 JCL Reference

v OS/390 JCL Users Guide

Pageable Link Pack Area (PLPA)

v OS/390 Extended Architecture Initialization and Tuning

v OS/390 SPL: Initialization and Tuning

VSAM

v OS/390 VSAM Administration Guide

v OS/390 VSAM Catalog Administration Access Method Services

TSO

v OS/390 TSO Primer

v OS/390 User’s Guide

SMP/E

v OS/390 System Modification Program Extended Messages and Codes

v OS/390 System Modification Program Extended Primer

v OS/390 System Modification Program Extended Reference

v OS/390 System Modification Program Extended User’s Guide

Bibliography

294 QMF: Developing QMF Applications

PL/I Publications

v PL/I VSE Language Reference

v PL/I VSE Programming Guide

REXX Publications

OS/390 environment

v IBM Compiler and Library for REXX/370: Users Guide and Reference

v TSO Extensions REXX/MVS Reference

VM environment

v Procedures Language VM/REXX Reference

v Procedures Language VM/REXX User’s Guide

ServiceLink Publications

v ServiceLink User’s Guide

VM Publications

v Virtual Machine Planning Guide and Reference

v Virtual Machine CMS Command and Macro Reference

VSE Publications

v VSE Planning Guide

v VSE Guide to System Functions

v VSE System Utilities

v VSE Guide for Solving Problems

Bibliography

Bibliography 295

Bibliography

296 QMF: Developing QMF Applications

Index

A
A-option for debugging 124
ADDRESS command 15, 37
application

commands
processing 20

controlling 1
debugging 123
implementation methods 3
programming interfaces with

QMF 4
QMF

controlling 1
implementation methods 3
running under 2
starting 24, 66

running under QMF 2
starting 24, 66

Application System (AS) 6
applications 1, 2, 3, 24, 66

bilingual 45, 78
CICS environment 4
command synonym 3
commands 1

END 53
EXIT 55
INTERACT 57
MESSAGE 60
overview 51
processing 20

data records 97, 105
debugging 123
developing 1
error handling 25
form objects 105
ISPF requirements 39
procedures 7
procedures with logic 4
programming interfaces with

QMF 4
REXX program calls 15
SAA 4
translating 50
types 1

ARG statement 12
arguments 12
AS (Application System) 6
assembler

CICS 127

assembler (continued)
MVS 142
sample program 132
VSE 143

CMS sample programs 136, 145
communications area 141
function calls 129
High Level Assembler

(HLASM) 127
interface communications area

mapping (DSQCOMMA) 128
language interface 127
macros 255
migration information 130
sample program 131
TSO sample programs 136, 147

Assembler H 127

B
batch mode 55

END command 55
bilingual objects 45
bilingual support

objects 45
binary data 83
break

panel 105, 232
break panel 105, 232

C
C (data continuation) records 116
C language

callable interface 150
CICS 159
CMS 162
communications area 150

defaults 151
DSQCOMM 158
mapping 151

function calls 152
interface requirements 153
ISPF 164
migration information 154
sample programs 154
TSO 163

CALL instruction 15
callable interface

accessing QMF variables 56
advantages 4
application, running 25

callable interface (continued)
calling from procedure with

logic 16
CICS in MVS 142
CICS, running under 26
COBOL 167
command processing

information 19
commands 23
communications area 4

assembler 128, 141
C 150, 158
COBOL 173
defining 21
error handling 25
FORTRAN 184, 192
modifying 21
PL/I 200, 207
set fields 22

debugging applications 123
description 4, 19
FORTRAN 184
GET GLOBAL command 56
interface calls 21
ISPF 4
languages 4, 19, 127
macros 255
passing variables 16
PL/I 200
program 4
return codes 23
REXX

communications
variables 217

description 216
invoking with 7
program calls 15
QMF startup 24
uses 4

sample programs 4
assembler 131
C 154
COBOL 171
FORTRAN 187
PL/I 203
REXX 221

SET GLOBAL command 64
START command 4

starting QMF 24, 66

© Copyright IBM Corp. 1983, 2002 297

callable interface (continued)
START command (continued)

syntax 66, 67
cataloged procedure

C 160
CICS-supplied 142
COBOL 176
DFHEBTAL 142
PL/I 209

chart
object 84

chart objects 84
CICS

31 bit addressing 127
assembler 4

MVS requirements 142
sample program 132
VSE requirements 143

C programs 159
callable interface 4
COBOL programs 176
CONNECT command 9
Considerations when using

IMPORT or EXPORT 121
data queue 4

IXF format 241
temporary storage

queues 121
transient data queues 121
using to transfer QMF

objects 79
DB2 interaction 27
EXEC CICS LINK interface 131
PL/I 209
program start parameter

overrides 26
region 27
temporary storage queues 121
transient data queues 121
VSE/ESA

assembler 143
C programs 160
COBOL programs 177
HLASM programs 143
import/export file

attributes 120
CMS

assembler programs 145
C programs 162
COBOL programs 179
FORTRAN 194
PL/I 211
REXX programs 223
sample assembler program 136

COBOL
callable interface 167
CICS 176
communications area 168
delimiters 175
DSQCOMM 173
execution requirements 175
function calls 169
ISPF 181
macros 255
migration information 170
sample program 171
TSO 180
VM 179
VSE 177

column 243, 244
C records 243
data format 244

command
ADDRESS 37
applications 51
bilingual applications 47
callable interface 23
DSQCIX subroutine 220
EDIT 42

with ISPF 42
END 53
environment 37
EXIT 55
GET GLOBAL 56
ICU 57
INTERACT 57
interactive execution 59
interface 3

description 29
DSQCCI 29
END command 31
INTERACT command 59
invoking from a program 31
program 29
requirements 4
return codes 33
sample program 30
SELECT service 31

ISPF 41
language variable 46
LAYOUT 102
length 20
MESSAGE 60
passing through callable

interface 20
processing information 19
QMF-supplied interface

routine 19
return code 13

command (continued)
REXX return codes 25
RUN 10
SAA Query 220
SELECT 41
SET GLOBAL 62, 64
START 24, 66
starting QMF 53
STATE 32
system specific 9
writing to trace data output 123

command synonym
creating 73
description 6
example 3
format 73
IRM 6
NLF table 49
table 74
uses 73

command synonyms
creating 73
description 6
example 3
format 73
IRM 6
NLF table 49
table 74
uses 73

commands
CONNECT 51
remote unit of work 51

comment 97, 106
application data records 97, 106
exported formats 106

communications area
assembler 128, 141
C 151, 158
COBOL 168, 173
defining 21
FORTRAN 184, 192
PL/I 200, 207

CONNECT command
description 51
example 51
initial procedures 9
procedures 9
SQL/DS 9
VM 9

control areas in exported objects 89
records of form files 89
records of report files 89
T records 92
V records 90

current location 51

298 QMF: Developing QMF Applications

D
data

binary 83
continuation (C) records 116
D records 244
object

binary data 83
exported 79, 80
formats 79, 227
header 80
import errors 83
import/export file

specifications 120
import/export rules 82
importing 82
IXF exported format 241

records, exporting 229
table description records (T) 91
table row records (R) 95
transfer rates 83
type widths 229
value records (V) 89

Data Extract (DXT) 6
data type

in imported form 110
keyword 110

database 78
non-QMF objects, storing 78
prompted query object,

importing 99
remote connections 9

database remote connections 9
date/time

information 106
date/time information 106
DB2 (IBM DATABASE 2)

CICS requirements 27
CONNECT command 9
remote connections 9

debugging applications
file allocation 125
ISPF, using 43
L-option for tracing 123
PDF dialog test 43
START command errors 126
TRACE option 123
using A-option for tracing 124

DSQABFA 136
DSQABFAC 132
DSQADPAN 68
DSQALANG 69
DSQCIA 129
DSQCIX subroutine 220
DSQCOMM

assembler 128, 141

DSQCOMM (continued)
C 151, 158
COBOL 168, 173
defining 21
DSQCOMMA 128, 141
DSQCOMMB 173
DSQCOMMC 158
DSQCOMMF 184, 192
DSQCOMML 200, 207
error handling 25
FORTRAN 184, 192
message text 126
PL/I 200, 207
set fields 22

DSQDC_DISPLAY_RPT global
variable 74

DSQEC_RERUN_IPROC global
variable 8

DSQRUN 53
DSQSBSTG 70
DSQSCMD 70
DSQSDBCS 70
DSQSDBNM 71
DSQSDBQN 71
DSQSDBQT 71
DSQSDBUG 71
DSQSDCSS 71
DSQSIROW 71
DSQSMODE 72
DSQSPILL 72
DSQSPRID 72
DSQSRSTG 72
DSQSRUN 72
DSQSSPQN 72
DSQSSUBS 72
DSQSUSER 73
DXT (Data Extract) 6

E
ECF (Enhanced Connectivity

Facility) 6
edit codes 110
EDIT command 42
encoded format

across report 117
definition 77
import/export file

specifications 120
information organization 91
object 77

export rules 98
formats 227
import rules 98

report object 111
uses 84

END command
command interface 31
description 53
interactive session 224
rerunning initial procedures 8
session types 53

batch mode 55
callable interface startup 53
initial procedure 53
INTERACT command 54
without initial procedure 54

end-of-object record (E) 97
Enhanced Connectivity Facility

(ECF) 6
environments 4
error

branching to subroutines 13
detection and analysis in an

EXEC or CLIST 34
handling statements, REXX 13
handling using REXX

variables 25
import 83
import (data and table

objects) 83
import (form) 109
import form 109
incomplete data prompt 82
label 13
messages 13
signal on instruction 13
START command 126
uninterruptible loop 8, 53

EXIT command 55
EXPORT command

DATA 79
data object 79
IXF option 241
table object 79
using CICS 121

exporting
across reports 117
binary data 83
break panels 105
chart objects 84
contents 102
data objects 79
date/time information 106
EBCDIC data 83
encoded format objects 98
form objects 77, 102
formats 77
object types 77
proc objects 83
prompted query object 84, 99

Index 299

exporting (continued)
release-specific formats 110
report objects 79, 111
SQL queries 83
table objects 79
translated forms 111

externalized format 78

F
form

application migration aid 106
application requirements 105
contents 85
data formats 227
data type keyword 110
default, creating 102
description 84
export 84

file specifications 120
format 232
overview 102
release-specific formats 110
rules 98

exporting 98
encoded format 84
file specifications 120
format 232
overview 102
release-specific formats 110
rules 98

field numbers 232
field value 89
file records 84
import

default file 105
encoded format 84
errors 109
fields 107
file specifications 120
rules 98

level, exporting 106
outside QMF 105
row data 95
sample header 87
table data 91
table numbers 232
translating 108, 111
variation numbers 108, 111
viewing 102

form object 84, 85, 87, 89, 91, 95,
102, 105, 106, 108, 110, 111, 227, 232

formats
column data 244
data 79
data object interpretation 80

formats (continued)
data, exporting 229
encoded

definition 77
information organization 91
object export rules 98
object import rules 98
uses 84

export 227
externalized 78
form object 232
header record 227, 228
import 227
IXF 77, 241
object level 86
prompted query object 230
report object 111, 238
table 79

FORTRAN
callable interface 184
CMS 194
communications area 184
DSQABFF 187
DSQCOMM 192
function calls 185
ISPF 197
macros 255
MVS 196
sample program 187
TSO 196

function calls
assembler 129
C 152
COBOL 169
DSQCIA 129
DSQCIB 169
DSQCIC 152
DSQCICE 152
DSQCIF 185
DSQCIFE 185
DSQCIPL 201
DSQCIPX 201
DSQCIX 220
DSQCIX subroutine 220
FORTRAN 185
PL/I 201
REXX 15, 220

G
GDDM (Graphical Data Display

Manager) 6, 57
Interactive Chart Utility 6

GET GLOBAL command 23, 56
global variable

access 56

global variable (continued)
creating 62
creating variables 62
DSQEC_RERUN_IPROC 53
QMF used through RUW 257
rules for 65
setting 64

SET GLOBAL command 64
Global variable

DSQDC_DISPLAY_RPT 74
Graphics Data Format (GDF) 84

H
header record

fields 85
form object 87
format 227, 228
information 85
IXF 242
length, calculating 80
object level 86
prompted query object 87
report object 88

High Level Assembler
(HLASM) 127

Home panel 8, 53
HTML report 79, 118, 240

I
ICU (Interactive Chart Utility) 6, 57
IFX

OUTPUTMODE=BINARY 252
IMPORT command

DATA option 82
definition 77
errors and warnings during

execution of 109
using CICS 121

importing 77
chart objects 84
data object 82
date/time information 105
detecting errors 83
encoded format objects 98
error handling 109
form object 84, 105, 107
non-QMF objects 78
object level information 86
procedures 83
prompted query object 84, 101
SQL queries 83
table object 82
tables created outside QMF 79
translated forms 108

incomplete data prompt 82

300 QMF: Developing QMF Applications

initial procedures 53
bilingual applications 47
CONNECT command 9
DSQEC_RERUN_IPROC global

variable 8
END command 53
Home panel 53
interactive mode 8
name, specifying 7
repeating 53
rerunning 8
specifying 53
storing 9
writing 7

INTERACT command
command form 59
description 57
session

ending 59
form 57
startup 54
termination 54, 55

interact switch
(DSQAO_INTERACT) 59

Interactive Chart Utility (ICU) 6
interactive mode

command execution 59
GDDM ICU 57
initial procedures 8
QMF 57

interface
callable

description 4, 19
function 19
REXX 4

command 4
description 29
END command 31
invoking 29, 31
return codes 33
sample program 30

communications area 4
assembler 128
C 151
COBOL 168
defining 21
FORTRAN 184
modifying 21
PL/I 200
processing information 19
set fields 22

communications macro 21
communications variables 4, 21,

217
customizing 39

interface (continued)
EXEC CICS LINK 131
macros 255
programming 255
REXX CALL 223

ISPF (Interactive System Productivity
Facility)

assembler programs 148
callable interface 39, 41
COBOL programs 181
commands 41
debugging applications 43
EDIT command 42
FORTRAN 197
panel generation 6
PL/I 214
SELECT command 41
SELECT service 31
starting QMF 53
tracing commands 43
TSO/C programs 164
user-written panels,

displaying 60
variable pool 32

IXF
OUTPUTMODE=CHARACTER 251
sample records 251

IXF (Integrated Exchange Format)
binary 83, 244
character 244

K
keywords 67, 110

data type 110
START command 67

L
L (report line) records 114
L-option for debugging 123
language

Assembler H 127
C 150
callable interface 4
COBOL 167
FORTRAN 184
HLASM 127
ID 39
NLF 49
PL/I 200
QMF-supplied interface

routine 19
return codes 25
REXX 216
START command syntax 66

language (continued)
variable

(DSQEC_NLFCMD_LANG) 46
LAYOUT command 102
linear procedure

STOPPROC option 60
suppressing 60

linear procedures 60
loop, uninterruptible 8
Lotus 1-2-3/M 6

M
macros, product interface 255
message

displaying 60
DSQCOMM 126
exit 13
writing to trace data output 123,

126
MESSAGE command

description 60
displaying text 61
examples 62
ISPF panels 60
options 60
QMF help panels 60
REXX EXIT instruction 13
suppressing linear procedure

execution 60
tracing 126

migration
assembler 130
break field numbers 106
C 154
COBOL 170
form objects 106
object level 86
PL/I 202

migration information 86, 106, 130,
154, 170, 202

minisession
invalid commands 76
report 74
valid commands 75

multilingual environments 48

N
National Language Feature

(NLF) 48
NLF (National Language Feature)

command synonym table 49
defined 45
language 49
language ID 39
multilingual environments 48

Index 301

NLF (National Language Feature)
(continued)

panel requirements 49
profile parameters 49
session environments 48
translating applications 50

Notices 273

O
object

bilingual 45
creating 78
data 79
end of 97
exporting 4

chart 84
contents 85
data types 83
encoded format 98
formats 77, 79, 227
IXF format 241
types 77
uses 78

externalized format 78
form 84, 105
importing 4

chart 84
data object 82
encoded format 98
errors 83
formats 227
table object 82

level 86, 105
non-QMF, storing 78
portable 78
procedure 4
prompted query 84
saving 78
SQL query 83
table 79
transferring 78

objects 4
bilingual 45
creating 78
data 79
end of 97
externalized format 78
form 84, 105
level 86, 105
non-QMF, storing 78
portable 78
procedure 83
prompted query 84
saving 78
SQL query 83

objects (continued)
table 79
transferring 78

P
panel

break 105
current 57
customizing 39
home 53
interactive 57
NLF requirements 49
variation 108, 111

PARSE ARG statement 12
PDF 43
PL/I

callable interface 200
CICS 209
communications area 200
DSQABFP 203
DSQCOMM 207
function calls 201
ISPF 214
macros 255
migration information 202
MVS 209
sample program 203
TSO 213
VM 211

portability 21
procedure

arguments 12
cataloged 4

C 160
CICS-supplied 142
COBOL 176
PL/I 209

command synonym 6
CONNECT command 9
creating outside QMF 83
editing 42
exporting 83
import/export file

specifications 120
importing 83
initial 4
linear

prompting for variables 11
uses 4

multiple queries 58
passing values 12
remote unit of work 9
REXX 4
system-specific commands 9
temporary storage 4

procedure (continued)
termination switch 60
with logic

advantages 4
creating 7
exiting 13
global variable 62
prompting for variables 11
REXX program calls 15
substitution variables 16
uses 4
using ISPF 41

product interface macros 255
program calls 15, 20
prompted query

contents 85
data formats 227
description 84
export format 230
export rules 98
exporting 84, 99
field numbers 230
field value 89
file records 84
import rules 98
import/export file

specifications 120
importing 84, 101
record order 101
relational 99
row data 95
sample header 87
table data 91
table numbers 230

prompted query object 84, 85, 87,
89, 91, 95, 98, 99, 101, 120, 227, 230

Q
QBE (Query-By-Example) 119, 120

export format 119
import/export file

specifications 120
query

containing variables 40
creating outside of QMF 83
editing 42, 83
export format

prompted 84
QBE 119
SQL 83

R
records

application data (*) 97
column (C) 243

302 QMF: Developing QMF Applications

records (continued)
data (D) 244
data continuation (C) 116
data value (V) 89
end-of-object (E) 97
fixed format 85
formats 229
header 85
order, prompted query file 101
report line (L) 114
shared values 116
table description (T) 91, 242
table row (R) 95
variable format 88

related products 6
remote

database connections 9
unit of work 9

procedures 9
remote unit of work

command behavior 51
report

across 238
contents 85
data formats 227
displaying 58
displaying text 61
export example 111
export format 238
export records 113
export rules 98
export uses 111
exported across 117
exporting 79
field numbers 238
field value 89
format 84
HTML 79, 118, 240
import rules 98
import/export file

specifications 120
line (L) records 114
minisession 74
object 2

across 238
contents 85
export format 238
export rules 98
field numbers 238
field value 89
format 84
import rules 98
import/export file

specifications 120
row data 95

report (continued)
object (continued)

sample header 88
table data 91
table numbers 238

panel 2
record types 113
records 85
row data 95
sample header 88
suppressing 58
table data 91
table numbers 238

Repository Manager/OS/390 6
resource control table 27
return codes

callable interface 23
command interface 34
message 13
nonzero 13
REXX commands 25

REXX
callable interface 4

access 220
CMS, running programs 223
description 216
error handling variables 25
invoking from QMF 41
QMF startup 24
sample programs 221
START command 67
TSO, running programs 224

command environment 37
command return codes 25
compiler 4
data processing rates 83
DSQABFX program 221
END command 224
EXIT instruction 13
function call 220
INTERACT looping 224
interface communications

variables 21, 217
interpretive 4
invocation calls 15
macros 255
MESSAGE command 13
procedures with logic

advantages 4
creating 7
error handling statements 13
substitution variables 16

program calls 15
variables 10, 12

RUN command
ARG option 12
imbedded substitution

variables 16
passing values 12
prompt panel 10
substitution variables 10

RUW (remote unit of work) 9

S
SAA (Systems Application

Architecture)
applications 4
callable interface 19, 127
language support 4
program portability 21
query commands 21, 220
START command keywords 67

SAVE DATA command 79
SELECT command 29, 41
session environments 48
SET GLOBAL command

callable interface 23, 64
prompting for variables 12
syntax 64

signal on error instruction 13
SQL (Structured Query Language)

query
object 83, 120

SQL query object 83, 120
SQL/DS

CICS/VSE requirements 27
CONNECT command 9
remote connections 9

START command
debugging errors 126
interface communications

area 21
keywords

DSQADPAN 68
DSQALANG 69
DSQSBSTG 70
DSQSCMD 70
DSQSDBCS 70
DSQSDBNM 71
DSQSDBQN 71
DSQSDBQT 71
DSQSDBUG 71
DSQSDCSS 71
DSQSIROW 71
DSQSMODE 72
DSQSPILL 72
DSQSPRID 72
DSQSRSTG 72
DSQSRUN 72

Index 303

START command (continued)
keywords (continued)

DSQSSPQN 72
DSQSSUBS 72
DSQSUSER 73
list 67

QMF startup 24, 66
syntax 66, 67

STATE command 32
substitution

variable
assigning values 10
global variables, setting 10
syntax 10
variables 10

substitution variable
RUN command 10

substitution variables 10
assigning values 10
global variables, setting 10
REXX program calls 16
syntax 10

synonyms 73
Systems Application Architecture

(SAA)
applications 4
callable interface 19, 127
language support 4
program portability 21
query commands 21, 220
START command keywords 67

T
table

command synonym 74
creating 79
creating outside QMF 241
description records (T) 91, 242
form, numbers 232
import

errors 83
file specifications 120
rules 82

importing 79
object

definitions 79
EXPORT 79
import errors 83
import/export file

specifications 120
import/export rules 82
importing 79, 82
processing 79

prompted query, numbers 230
report, numbers 238

table (continued)
row records (R) 95

table record 242
temporary storage 4, 25

modifying 25
queue 122
restrictions 4

temporary storage queue 122
text, displaying 61
trace

data
file 125

data output 123
trace data output 123, 125
tracing

A-option 124
creating trace definitions 43
example 126
ISPF commands 43
L-option 123
MESSAGE command 126
turning off 125

transient data queue 122
contrasted with temporary

storage queue 122
translatable applications 50
TSO

assembler callable interface
programs 147

assembler programs 147
C callable interface

programs 163
C programs 163
COBOL callable interface

programs 180
COBOL programs 180
FORTRAN callable interface

programs 196
FORTRAN programs 196
PL/I callable interface

programs 213
PL/I programs 213
REXX callable interface

programs 224
REXX programs 224

V
value (V) records 89
variables

access, global 56
command language 46
data 19
error handling 25
format records 88
global 10, 257

variables (continued)
substitution 10

interface communications 21
language-sensitive objects 50
passing from callable

interface 16
pool 19, 32
prompting for 11
QMF 32
rc 13
REXX 12, 217
rules 65
setting 10
setting, global 64
substitution 10
within queries 40

variation panels 108, 111
VSE CICS 120

304 QMF: Developing QMF Applications

Readers’ Comments — We’d Like to Hear from You

Query Management Facility™

Developing QMF Applications
Version 7 Release 2

Publication No. SC27-0718-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC27-0718-01

SC27-0718-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department HHX/H3
555 Bailey Ave.
San Jose, CA
U.S.A.
95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5675-DB2
5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC27-0718-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
Q

M
F

D
ev

el
op

in
g

Q
M

F
Ap

pl
ic

at
io

ns
Ve

rs
io

n
7

R
el

ea
se

2

	Contents
	The QMF Library
	About This Book
	How to use this book
	What you should know before you begin
	How to send your comments
	How to order QMF books

	Chapter 1. QMF Application Development Overview
	What Is application development in QMF?
	How can the end users use your application?
	What QMF application development tools are available?
	QMF procedures
	QMF callable and command interfaces
	External formats for QMF objects
	Command synonyms
	Other IBM products that bridge to QMF

	Chapter 2. Using Procedures as Applications
	Knowing when not to use Procedures
	Initial procedures
	Considerations for writing initial Procedures
	Initial Procedures and Remote Unit of Work

	Using QMF CONNECT within a procedure
	Substitution variables in procedures
	Specifying values on the RUN command
	Specifying values on the RUN command prompt panel

	Using REXX variables in procedures with logic
	Passing arguments to a procedure with logic
	Using REXX error-handling statements in procedures with logic
	Branching to error-handling subroutines
	Using messages with the REXX EXIT statement

	Calling REXX programs from a procedure with logic
	Calling REXX programs without substitution variables
	Calling REXX Programs that contain substitution variables

	Chapter 3. The Callable Interface
	What is the Callable Interface?
	Considerations for using the QMF Callable Interface

	Defining the Interface Communications Area (DSQCOMM)
	Return Codes
	Commands for using the callable interface
	Starting QMF from an application

	Running your callable interface application
	Using the callable interface from within QMF
	Error handling
	Running callable interface programs under CICS

	Chapter 4. Using the Command Interface for Applications
	Writing a program that uses the command interface: An example
	Invoking the command interface
	The END command
	Using variables in the command interface
	Command interface return codes
	Return codes 0 through 16
	Return comes of 20 or more

	Chapter 5. ADDRESS QRW: Using the QMF Command Environment
	Chapter 6. Writing QMF Applications that Use ISPF
	Starting and running QMF from an ISPF application
	Running queries that contain variables
	Invoking a program from a QMF procedure with logic under ISPF
	Using ISPF commands from a procedure with logic
	Callable interface considerations
	Using the EDIT command with ISPF
	Using ISPF to debug applications
	Using ISPF log service
	Using PDF dialog test

	Chapter 7. Writing Bilingual Applications
	Creating bilingual objects for your applications
	Using the command language variable
	Using an initial Procedure in a bilingual application
	Using English commands
	Multilingual environments
	QMF session environments
	Environmental similarities
	Environmental differences

	Creating translatable applications

	Chapter 8. QMF Commands in Applications
	CONNECT
	An example

	END
	Session started by the Callable Interface
	Interactive session with an Initial Procedure (DSQSRUN)
	Interactive session without an Initial procedure
	Interactive session begun by an INTERACT command
	Batch mode session

	EXIT
	GET GLOBAL
	INTERACT
	The session form of INTERACT
	The command form of INTERACT

	MESSAGE
	Examples of using the MESSAGE command to generate messages

	SET GLOBAL
	SET GLOBAL: linear syntax
	SET GLOBAL: Extended syntax

	START
	START command syntax for the REXX Callable Interface
	START command keyword

	Using command synonyms
	Creating a command synonym
	SAA RUN QUERY report minisession

	Chapter 9. Importing and Exporting QMF Objects
	What you can do with an exported file, data set, or CICS data queue
	Exporting versus saving data
	Data and table objects
	Interpreting a data object in QMF format: an example
	Rules and information for export/import of data and table objects

	Procedures and SQL queries
	Chart objects
	Encoded objects
	Fixed format records
	Variable format records
	Application data record (*)
	Exporting encoded format objects
	Importing encoded format objects

	Prompted query objects
	Exporting a prompted query object
	Importing a prompted query

	Form objects
	Creating a default form: an example
	Considerations for QMF form objects in applications
	Importing a form object
	Exporting a form object

	Report objects
	Example of exporting a report
	Report line records (L)
	Data continuation records (C)
	HTML reports

	QBE queries
	Specifications for externalized QMF objects
	Rules and considerations when using CICS queues

	Chapter 10. Debugging Your QMF Applications
	Debugging your callable interface applications
	Using the L-option for tracing
	Using the A-option for tracing
	Turning the tracing off
	Allocating the QMF trace data output
	Using tracing with the QMF MESSAGE command

	Debugging errors on the START and other QMF commands

	Appendix A. Sample Code for Callable Interface Languages
	Assembler language interface
	Interface communications area mapping for Assembler (DSQCOMMA)
	Function calls for Assembler language
	Migration information
	Assembler programming examples
	DSQCOMM for Assembler
	Running Your Assembler programs in CICS
	Assembling and running your programs under CMS in VM
	Running your Assembler programs in TSO

	C Language Interface
	Interface communications area mapping for C language (DSQCOMMC)
	Function calls for the C language
	Migration information
	C language programming example
	DSQCOMM for C
	Running your programs in CICS
	Compiling and running your programs under CMS in VM
	Running your C programs in TSO

	COBOL language interface
	Interface communications area mapping for COBOL (DSQCOMMB)
	Function calls for COBOL
	Using ISPF LIBDEF service with COBOL
	Migration information
	COBOL programming example
	DSQCOMM for COBOL
	Considerations for running your COBOL callable interface program
	Running your COBOL programs in CICS
	Compiling and running your programs under CMS in VM
	Running your COBOL programs in TSO

	FORTRAN language interface
	Interface communications area mapping for FORTRAN (DSQCOMMF)
	Function calls for FORTRAN
	FORTRAN programming example
	DSQCOMM for FORTRAN
	Compiling and running your programs under CMS in VM
	Running your programs under TSO in MVS

	PL/I language interface
	Interface communications area mapping for PL/I (DSQCOMML)
	Function calls for PL/I
	Migration information for users of CICS in MVS
	PL/I programming example
	DSQCOMM for PL/I
	Running your programs under CICS
	Compiling and running your programs under CMS in VM
	Compiling and link-editing in TSO

	REXX language interface
	Interface communications variables for REXX
	Function call for REXX
	REXX programming example
	Running your programs under CMS in VM
	Running your programs under TSO in MVS
	A REXX example of using an INTERACT l’QMF720oop

	Appendix B. Export/Import Formats
	QMF format for data
	Header records
	Data records

	Table and field numbers for the prompted query object
	Table and field numbers for the form object
	Table and field numbers for the report object
	HTML tags used in QMF reports

	Appendix C. Integrated Exchange Format (IXF)
	Header record (H)
	Table record (T)
	Column record (C)
	Data record (D)
	Column data format
	Format of column data by data type

	Examples of IXF

	Appendix D. Product Interface Macros
	Appendix E. QMF Global Variable Tables
	DSQ Global Variables for Profile-Related State Information
	DSQ Global Variables for State Information Not Related to the Profile
	DSQ Global Variables Associated with CICS
	DSQ Global Variables Related to a Message Produced by the Previous Command
	DSQ Global Variables Associated with Table Editor
	DSQ Global Variables That Control How Information is Displayed on the Screen
	DSQ Global Variables That Control How Commands and Procedures Are Executed
	DSQ Global Variables That Show Results of CONVERT QUERY
	DSQ Global Variables That Show RUN QUERY Error Message Information

	Appendix F. Notices
	Trademarks

	Glossary of Terms and Acronyms
	Bibliography
	APPC Publications
	CICS Publications
	COBOL Publications
	DATABASE 2 Publications
	DCF Publications
	DRDA Publications
	DXT Publications
	Graphical Data Display Manager (GDDM) Publications
	HLASM Publications
	ISPF/PDF Publications
	OS/390 Publications
	PL/I Publications
	REXX Publications
	ServiceLink Publications
	VM Publications
	VSE Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

